
IJAIA

Volume 1 | Number 1 | June 2025 | Pages XXX-XXX

* Corresponding author DOI: https://doi.org/

International Journal of Artificial Intelligence Applications

ISSN (online): 0000-0000

Homepage: ijaia.com

Enhanced Parrot Optimizer Algorithm: A Proposed Method for

Optimized Malware Classification

Arar Al Tawil1*, Doaa Qawasmeh2, Baraah Qawasmeh3

1Faculty of Information Technology, Applied Science Private University, Amman 11931, Jordan

E-mail: ar_altawil@asu.edu.jo
2Faculty of Artificial Intelligence, Al-Balqa Applied University, Salt, 19117, Jordan

E-mail: doaa.qawasmeh@bau.edu.jo
3Department of Civil and Construction Engineering, Western Michigan University, Kalamazoo, MI 49008, USA

E-mail: baraah.qawasmeh@wmich.edu

Received: 01, 2025 Revised: 02, 2025 Accepted: 03, 2025 Available online: 06, 2025

ABSTRACT — The pervasive use of Android devices has resulted in a substantial increase in cyber threats,
notably Android malware, which threatens user data privacy and security. Traditional detection methods that
rely on static code or behavioral analysis have become less effective as malware evolves with sophisticated
and polymorphic features. This research introduces a novel method for improving the detection and
classification of Android malware using bio-inspired optimization algorithms. We introduce the Parrot
Optimizer (PO) and its hybrid combination with Particle Swarm Optimization (POPSO) to enhance the overall
detection accuracy and feature selection. Using POPSO and GWO methods, we evaluated the performance of
a variety of classifiers, such as Decision Tree, Gradient Boosting, HistGradientBoosting, Random Forest, and
XGBoost, across a range of population sizes and iterations. The PO PSO approach significantly improves
detection capabilities, as evidenced by our experiments. Specific classifiers achieve up to 99% accuracy, while
the average accuracy improvement is 5-10%. The significance of exhaustive feature selection, robust machine-
learning models, and large datasets in developing effective malware detection systems is underscored by these
results.

Keywords — Android malware; bio-inspired optimization; Parrot Optimizer; Particle Swarm Optimization;
feature selection; machine learning; malware detection

1. INTRODUCTION

The Android ecosystem has not only facilitated innovation and user empowerment, but

it has also inadvertently allowed a relentless surge of cyber threats to enter due to its open and

adaptable nature. Android malware is a pervasive and evolving menace among these threats

[1].

As per Kaspersky Security Network, the number of mobile malware blocks exceeded 5.5

million in Q3 2022, indicating a recent exponential rise in the prevalence of mobile malware [2].

Android malware is a type of malicious software intended to exploit vulnerabilities, steal

sensitive information, disrupt operations, and occasionally extort users [3].

These malicious programs, which are frequently concealed within apparently innocent

applications, present a substantial risk to the integrity of the Android ecosystem, personal

privacy, and data security [4].

Identifying and categorizing Android malware has never been more pressing in light of

this imminent menace. More than conventional security measures are required as the Android

https://doi.org/
mailto:ar_altawil@asu.edu.jo
mailto:doaa.qawasmeh@bau.edu.jo
mailto:baraah.qawasmeh@wmich.edu

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

malware landscape continues to evolve with increasing sophistication [5]. Therefore, creating

effective malware detection and classification methods is paramount. By employing

sophisticated analysis methods and comprehending the inner workings of malware, we can

strengthen the resilience of the Android ecosystem, safeguard user data, and mitigate the

hazards they present [6].

The landscape of Android malware analysis has presented researchers with new

opportunities and challenges. Traditional methods for detecting and classifying Android

malware frequently employed machine learning and deep learning algorithms, as well as

features such as n-grams, API calls, and sandbox outputs [7]. Although these methods have

been effective, they are not without their limitations. As Android malware becomes more

sophisticated, it is not solely about the static analysis of code or the behavior of applications but

also about their visual appearance to the human eye [8].

A novel approach that is garnering attention is the use of bio-inspired optimization

algorithms to improve the detection and classification of Android malware. The hybrid method

known as PO PSO is developed by combining the Parrot Optimizer (PO) with Particle Swarm

Optimization (PSO) in this innovative technique. These optimization methods introduce a new

dimension to malware analysis and introduce new challenges. The application of PO and PO

PSO raises concerns regarding the efficacy of feature selection, the capacity to manage large

datasets, and the necessity of rigorous evaluation techniques. Android malware is evolving

with increasingly complex and polymorphic characteristics, prompting the research

community to investigate these optimization-based techniques. This change not only enhances

detection and provides more profound insights but also underscores the importance of resilient

machine learning and deep learning models, extensive datasets, and comprehensive feature

selection. This research makes the following contributions to the field of Android malware

detection:

• Implementation of Parrot Optimizer (PO): Introduced and assessed the Parrot

Optimizer (PO) for feature selection in Android malware detection, illustrating its

efficacy in identifying pertinent features.

• Hybrid Optimization Approach: A hybrid optimization method was developed to

improve the quality of solutions and the pace of convergence by combining particle

swarm optimization (POPSO) with particle optimization (PO).

• Performance Comparison: Conducted extensive experiments to compare the

performance of various classifiers using PO PSO and GWO across various iterations and

population sizes.

• Dataset Utilization: Highlighted the importance of permission-based and API-based

features in malware detection by utilizing the TUNADROMD dataset, which contains

4465 instances and 241 attributes.

• Enhanced Malware Detection: Enhanced the ability to detect and classify Android

malware effectively, thereby contributing to more effective cybersecurity measures.

The paper is organized as follows: Existing methods and approaches for Android

malware detection are examined in the Related Work section, emphasizing conventional

methods’ constraints. The preliminary section offers a comprehensive explanation of the bio-

inspired optimization algorithms employed in this study, including the Parrot Optimizer (PO),

Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO). Additionally, it

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

provides an overview of the implemented classifiers, including Decision Tree, Gradient

Boosting, HistGradientBoosting, Random Forest, and XGBoost. The Methods section delineates

the comprehensive methodology, including the dataset, feature selection process, classification

techniques, and performance evaluation metrics. The experimental results are presented in the

Results section of the paper, which compares the performance of various classifiers using PO

PSO and GWO and illustrates the efficacy of the proposed method. Lastly, the Conclusion

provides a concise summary of the primary findings and contributions of the research, with a

particular emphasis on the hybrid POPSO algorithm’s enhancement of detection accuracy. It

also suggests potential areas for future research to improve Android malware detection

systems further.

2. RELATED WORK

Numerous types of malwares exist, including code, scripts, active content, and other

software. It is a general term that refers to various malicious software, such as computer viruses,

ransomware, worms, Trojan horses, rootkits, keyloggers, dialers, spyware, adware, and other

harmful programs [9].

Algorithm for the classification of Android malware. Table 1 illustrates the comparative

analysis of the Android malware classification approach. Droid Mat was proposed by Wu et al.

[8] as a method for detecting Android malware by utilizing behavior-based features. Static

information is extracted from each application’s manifest file and API calls pertaining to

permissions by Droid Mat. In order to improve the malware modeling capability, the K-means

algorithm is implemented. Then, the Singular Value Decomposition (SVD) method is employed

to ascertain the number of clusters in the low rank approximation. The final step employs the

k-nearest Neighbor (kNN) algorithm to determine whether the application is benign or

malevolent. They can obtain an accuracy of 97.87% when tested on the Contagio Mobile dataset.

Authors in [10] proposed a dynamic analysis of application behavior to detect malware

in the Android platform (Crowdroid). The Crowdroid is integrated into the framework for

crowdsourcing to accumulate data from genuine users. They obtained an accuracy of 100%

when tested on two types of data sets: artificial malware created for testing purposes and actual

malware from Virus Total. The investigation was, however, evaluated on a limited quantity of

data. Machine learning techniques were employed to develop a framework for the classification

of Android applications in additional work by Aung et al. [11]. This system monitors a variety

of permission-based features and events that are sourced from Android applications. The

application’s classification as benign or malware was determined by testing it on 200 dataset

samples using machine learning classifiers. Our work differs from that of Aung et al. [11] in

that we classify the Virus Total and Malgenome dataset into three categories: ransomware,

scareware, and goodware using the K-means algorithm. In addition, Schlesinger et al. [12]

employed live data with a permission-based feature, whereas we employed a behavior-based

feature. Next, we employed the K-Means clustering algorithm to organize the virus. We

selected the Random Forest algorithm because it is the most appropriate algorithm for both

datasets.

Authors in [13] research on the application of K-Means clustering to the classification of

Android malware is a significant contribution to the field. Their work, which distinguished

between goodware, scareware, and ransomware, focused on features such as encryption, lock

detection, and menacing texts, using datasets such as Virus Total and Malgenome. The

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

proposed model’s exceptional accuracy, notably with the Virus Total dataset, at 98.12%,

validates the use of clustering techniques in malware categorization, instilling confidence in

their robustness.

Significant strides have been made in the field of Android malware detection, with

researchers employing a variety of methodologies, such as feature-based approaches, hybrid

and deep learning models, and considering the malware’s temporal evolution. The following

points highlight and categorize notable research contributions based on their methods and

conclusions, underscoring the significance of this research.

• Feature-Based Detection Approaches: To increase the accuracy of malware detection,

researchers have employed innovative methods. For instance, this paper [14] suggests a

machine learning-based method that combines permissions and API calls with

contextual data, achieving a detection accuracy of 99.4%. Similarly, [15] presents

’RanDroid,’ a system that utilizes numerous capabilities, such as permissions and API

calls, to achieve an impressive 97.7% accuracy. This work [16] focuses on using API calls

as features to identify malicious applications in a different study. The authors

demonstrate the significance of feature selection in managing high dimensional datasets

by using Support Vector Machines (SVM) and achieving competitive results.

• Hybrid and Deep Learning Models: To address the complexity of Android malware,

the combination of deep learning and conventional machine learning techniques has

been investigated. [17] offers a hybrid model that improves feature extraction

performance and attains higher detection accuracy by fusing convolutional neural

networks (CNN) and deep autoencoders (DAE). Another strategy covered by [18]

combines elements like permissions and intents with ensemble learning techniques to

identify sophisticated malware. This study highlights the efficacy of ensemble

approaches, with a high accuracy rate of 96.24% and a low false positive rate.

• Time-aware and Evolutionary Approaches: Acknowledging the temporal dynamics

involved in malware growth, [19] presents the Time-Aware Machine Learning (TAML)

framework, which uses time correlated variables to detect malware over years with a

high F1 score. This method emphasizes the crucial need to consider temporal variables

while improving the resilience of detection algorithms. Additionally, [20] investigates

how feature selection techniques can be applied to a random forest algorithm, showing

how careful feature selection can increase detection accuracy. In the meantime, this

paper [21], presents a supervised learning technique verified on numerous datasets and

investigates the difficulties in maintaining detection robustness against evolving threats.

• Concept Drift and Adaptation: This paper [22] examines the development of Android

security permissions and their effects on long term malware detection systems to

address the problem of concept drift. The research shows that even permissions specified

in previous iterations of Android might be helpful in creating long lasting detection

models. Furthermore, [23] introduces a feature vector generating method based on

Huffman encoding that uses Random Forest classifiers to achieve 98.70% detection

accuracy. This new method improves our comprehension of malware’s dynamic

behavior patterns. This research [24] delves deeper into the problem of concept drift by

introducing the KronoDroid dataset, which includes static and dynamic features over a

long period. This collection aids the development of reliable detection algorithms and

the research of malware evolution. Lastly, [25] and [26] examine how effective detection

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

i

models are over the long run, emphasizing the need for ongoing adaption to new

malware patterns.

3. PRELIMINARIES

This section describes two bio-inspired algorithms for Android Malware: The Parrot

optimizer Proposed, Grey Wolf Optimizer and all the classifiers use in this work.

3.1 The parrot optimizer (PO)

This section explains the overall background of the PO and the formulated optimization

models.

2.1 Inspiration

A popular choice among pet owners, the Pyrrhura Molinae is a well-liked parrot species

known for its attractive features, close connection with its owners, and simplicity of training.

Studies and breeding endeavors conducted in the past have demonstrated that Pyrrhura

Molinae exhibits four distinct behavioral traits: a fear of strangers, foraging, remaining,

and communicating [27]—behaviors such as these.

• The foraging behavior of domesticated Pyrrhura Molinae is captivating, as individuals

opt to forage in small groups in areas where food is abundant [27]. Utilizing their

owner’s location and the group’s presence, they can locate the sustenance by proceeding

toward it. They improve their quest by employing visual and olfactory cues.

• The staying behavior entails Pyrrhura Molinae haphazardly perching on various parts

of their owner’s body. These gregarious birds generate unique calls to facilitate

communication within their group, which serves as a means of both social interaction

and the dissemination of information.

• Pyrrhura Molinae flees from unfamiliar individuals and seeks safety with their

proprietors for protection due to the natural dread of strangers, a common trait among

birds [27].

• Critically, the motivation for our design is underscored by the unpredictability of

Pyrrhura Molinae behavior, as these four behaviors occur at random in each individual

during each iteration within domesticated colonies.

2.2 Mathematical model of PO

2.2.1 Population initialization

The initialization formulation for the proposed PO can be represented as follows, taking

into account a swarm size of N, maximum iterations of Max iter, and search space limits of lb

(lower bound) and ub (upper bound):

𝑋𝑖
0= lb + rand(0, 1) · (ub − lb) (1)

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

 where rand(0, 1) denotes a random number in the range [0, 1] and 𝑋𝑖
0 denotes the

position of the ith Pyrrhura Molinae in the initial phase.

3.1.1 Foraging behavior

In the Parrot Optimizer (PO), the parrots predominantly estimate the approximate

location of food by observing the food’s position or contemplating the owner’s location during

the foraging behavior. They then proceed to the designated location by air. The equation that

governs positional movement is as in Eq. (1):

𝑋𝑖
𝑡+1 = (𝑋𝑖

𝑡 − 𝑋best) ⋅ Levy(dim) + rand(0,1) ⋅ 1 −
𝑡

 Maxiter

2𝑡
 Maxiter

⋅𝑋mean
𝑡

 (1)

In this equation:

• 𝑋𝑖
𝑡 denotes the current position of the 𝑖-th parrot.

• 𝑋𝑖
𝑡+1 represents the updated position after the next iteration.

• 𝑿mean
𝑡 is the average position of the current population.

• Levy(dim) denotes the Levy distribution, used to describe the flight of parrots.

• 𝑋best is the best position found from the start until the current iteration and also

represents the owner's current position.

• 𝑡 is the current number of iterations.

The term (𝑋𝑖
𝑡 − 𝑋best) Levy(dim) indicates movement based on the parrot's position

relative to the owner. The term rand (0,1) ⋅ 1 −
𝑡

 Maxiter
 Maxitert ⋅ 𝑋𝑡

𝑡 mean represents the

observation of the population's overall position to further refine the search for food.

The average location of the current swarm, denoted by 𝑋𝑡 mean, is attained using the

formula shown in Eq. (2) :

𝑋mean
𝑡 =

1

𝑁𝑘=1
𝑋𝑘

𝑡 (2)

The Levy distribution can be obtained based on the rule in Eq. (3), where 𝛾 is assigned

the value of 1.5.

Levy(dim) =
𝜇 ⋅ 𝜎

|𝑣|1/𝛾
 (3)

3.1.2 Staying Behavior

The Pyrrhura Molinae is a highly sociable creature. Its primary lingering behavior is an

abrupt flight to any part of its owner’s body, which remains stationary for a specific period. The

process can be represented as in Eq. (4):

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑋best ⋅ Levy(dim) + rand(0,1) ⋅ ones (1, dim) (4)

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

where ones (1, dim) denote the all-1 vector of dimension dim. The term 𝑋best ⋅ Levy(dim)

denotes the flight to the host, and rand (0,1) ⋅ ones(1, dim) denotes the process of randomly

stopping at a part of the host's body.

3.2.1 Communicating Behavior

Pyrrhura Molinae parrots are inherently social creatures distinguished by their close

communication within their groups. This communication behavior includes communicating

without flying and soaring to the flock. In the PO, the mean position of the current population is

used to represent the center of the flock, and both behaviors are assumed to occur with equal

probability. The process can be represented as:

where 0.2 ⋅ rand(0,1) ⋅ 1 − 𝑡
 Maxiter

⋅ (𝑋𝑖
𝑡 − 𝑋mean

𝑡) denotes the process of an individual joining a

parrot's group to communicate and 0.2 ⋅ rand(0,1) ⋅ exp −
𝑡

 rand (0,1)⋅ Max iter
 denotes the process of

an individual flying away immediately after communicating. Both behaviors are feasible and, as

such, are implemented using a randomly generated 𝑃 within the range of [0,1].

3.1.4 Fear of Strangers' Behavior

Pyrrhura Molinae parrots are no exception to the general rule that animals naturally dread

strangers. Their conduct of avoiding unfamiliar individuals and seeking refuge with their

proprietors in quest of a secure environment can be characterized as in Eq. (5):

𝑋𝑡+1

𝑖
= 𝑋𝑡

𝑡

𝑖
+ rand(0,1) ⋅ cos 0.5𝜋 ⋅

𝑡

 Max iter
⋅ 𝑋

 best
− 𝑋𝑖

𝑡

 − cos(rand(0,1) ⋅ 𝜋) ⋅
𝑡

Maxiter

2

⋅ 𝑋𝑖
𝑡 − 𝑋best

𝑋 𝑖
𝑡+1 = 𝑋𝑖

𝑡 + rand(0,1) ⋅ cos 0.5𝜋 ⋅
𝑡

 Max iter
⋅ 𝑋best − 𝑋𝑖

𝑡

 − cos(rand(0,1) ⋅ 𝜋) ⋅
𝑡

Maxiter
⋅ 𝑋𝑖

𝑡 − 𝑋best

 (5)

where rand(0,1) ⋅ cos 0.5𝜋 ⋅
 Aaxter 𝑡

⋅ (𝑋best − 𝑋𝑡) shows the process of reorienting to fly

towards the owner, and cos (rand(0,1) ⋅ 𝜋) ⋅
𝑡

 Maxiter 2
 2 ⋅ (𝑋𝑖

𝑡 − 𝑋best) indicates the adjustment of

the position based on the current iteration. Shows the process of moving away from the strangers.

3.2 Particle Swarm Optimization (PSO)

The social behavior of birds flocking or fish schooling inspires the population-based

optimization algorithm known as PSO. In order to resolve an extensive array of optimization issues,

it simulates the intelligence and movement of particles within a search space. PSO is characterized

by moving a group of particles (potential solutions) through the search space to identify the most

optimal solution. The position of each particle is adjusted by the experience of the particle and the

experience of its neighbors [28].

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

3.2.1 Initialization

Particles are initialized with random positions and velocities. Each particle has a memory of

its best position and knows the best position found by the swarm.

3.2.2 Velocity Update

𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖
best − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔best − 𝑥𝑖(𝑡)) (6)

Where:

• 𝑣𝑖(𝑡) is the velocity of particle 𝑖 at time 𝑡.

• 𝜔 is the inertia weight.

• 𝑐1 and 𝑐2 are cognitive and social coefficients.

• 𝑟1 and 𝑟2 are random numbers in the range [0, 1].

• 𝑝𝑖
best is the best position of particle 𝑖.

• 𝑔best is the global best position found by the swarm.

3.2.3 Position Update

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (7)

Where:

• 𝑥𝑖(𝑡) is the position of particle 𝑖 at time 𝑡.

• 𝑣𝑖(𝑡 + 1) is the updated velocity of particle 𝑖.

3.3 Parrot-PSO Optimizer (POPSO) Proposal

The Hybrid Parrot-PSO Optimizer (POPSO) represents an advanced optimization algorithm

that combines the Parrot Optimizer with Particle Swarm Optimization (PSO) and integrates an

enhanced local search mechanism using Simulated Annealing (SA). This hybrid approach is

designed to improve the convergence speed and solution quality, particularly for complex

optimization problems. Below, we highlight the key modifications and innovations introduced in

this new approach.

3.4 Key Modifications and Innovations

1. Combination of Parrot Optimizer and PSO:

• The POPSO algorithm synergizes the exploration capabilities of the Parrot Optimizer with

the exploitation strengths of PSO. This combination allows the algorithm to effectively

navigate the search space and avoid local optima.

2. Adaptive Alpha Parameter:

• An adaptive alpha parameter is introduced, which decreases linearly over iterations. This

helps in balancing exploration and exploitation dynamically as the search progresses in Eq.

(8):

𝛼 = 2 × 1 −
𝑖

 Max_iter
 (8)

3. Equation for Particle Position Update:

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

• The position update for each particle depends on the selected strategy St, chosen randomly

from {1,2,3,4}. The strategies are defined as follows:

(a) Strategy 1:

𝑋new[𝑗] = 𝑋[𝑗] + 𝛼 × (𝑋[𝑗] − 𝑋[random particle]) (9)

This strategy modifies the particle's position based on the difference from a randomly

selected particle, using a decreasing factor 𝛼 for balancing exploration and exploitation.

(b) Strategy 2:

𝑋new [𝑗] = 𝑋[𝑗] + 𝐺𝐵𝑒𝑠𝑡𝑋 × Levy (dim) + Gaussian noise (10)

Incorporates a global best position (GBestX) and a Levy flight to introduce variability, aiding

in exploring the search space.

(c) Strategy 3:

𝑋new [𝑗] = 𝑋[𝑗] + 𝛼 × (𝑋[𝑗] − mean(𝑋)) (10)

Adjusts the position based on the mean of the population, helping the particles converge

towards the swarm's center.

(d) Strategy 4:

𝑋new [𝑗] = 𝑋[𝑗] + random value × cos
𝜋 × 𝑖

2 × Max_iter
× (GBest 𝑋 − 𝑋[𝑗])

−cos (𝜃) ×
𝑖

 Max_iter

2

× (𝑋[𝑗] − 𝐺𝐵𝑒𝑠𝑡𝑋)

 (11)

Uses cosine functions to introduce controlled oscillations, allowing fine tuning around

the global best position.

In each iteration, the particles’ positions are updated based on these strategies, helping

the optimizer navigate and refine the search space effectively. The use of multiple strategies

enhances the algorithm’s ability to avoid local optima and improves convergence speed.

4. Enhanced Local Search using Simulated Annealing (SA):

• The best individual in the current population undergoes a local search refinement using

Simulated Annealing. This helps in further improving the solution quality by escaping local

optima and enhancing convergence.

5. Early Stopping Criteria:

• The algorithm includes early stopping mechanisms based on two criteria:

– No improvement observed for a defined number of iterations.

– Maximum allowed runtime.

6. PSO Velocity and Position Updates:

• The velocity and position of particles are updated using standard PSO equations with

random components for cognitive and social influences.

These modifications in the Hybrid Parrot-PSO Optimizer (POPSO) introduce a more

robust and adaptive optimization framework, capable of achieving superior performance in

feature selection and other complex optimization tasks as present in algorithm 1 and Figure 1 .

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

By integrating PSO and SA into the Parrot Optimizer, the algorithm benefits from enhanced

exploration and exploitation capabilities, leading to improved optimization results.

3.5 Classifiers

3.5.1 Decision Tree
A Decision Tree [29] is a nonparametric supervised learning method employed for

regression and classification. It creates a decision-making model that resembles a tree by

dividing the data into subsets based on the value of input features. Each internal node

represents a test on an attribute, each branch represents an outcome of the test, and each leaf

node represents a class label.

3.5.2 Gradient Boosting
Gradient Boosting [30] is an ensemble learning technique that optimizes a loss function

to construct a model stage-wise. It constructs a robust predictor by integrating the predictions

of numerous poor learners, typically decision trees. The aggregate error is minimized by fitting

each tree in the sequence to the residual errors of the previous trees.

3.5.3 HistGradientBoosting
Histogram-based Gradient Boosting [31], or HistGradientBoosting, is a variation of

gradient boosting that employs histograms to segment continuous input features. This method

is appropriate for large datasets because it can enhance training speed and decrease memory

utilization. It is notably effective for large datasets and high dimensional data.

3.5.4 Random Forest
Random Forest [32], an ensemble learning method, plays a crucial role in enhancing

model robustness and accuracy. It achieves this by aggregating multiple decision trees, thereby

reducing overfitting, and generating the mode of the classes (classification) or the mean

prediction (regression) of the individual trees during training.

3.5.5 XGBoost
XGBoost, or eXtreme Gradient Boosting [33], is a distributed gradient boosting library

extensively optimized to be highly efficient, flexible, and portable. It employs machine learning

algorithms within the Gradient Boosting framework, emphasizing performance and efficiency.

It comprises a variety of sophisticated capabilities, including sparsity awareness,

regularization, and a weighted quantile sketch, which are designed to manage sparse data.

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

Algorithm 1 Hybrid Parrot-PSO Optimizer (POPSO)

Require: Objective function fobj, lower bounds lb, upper bounds ub, dimensions dim,

number of particles N , maximum iterations Max iter, max iteration without improvement max

no improvement, maximum runtime max time

Ensure: Best position Best pos, Best score Best score, Convergence curve

curve

1: Initialize population X, velocities V , personal bests PBest, and global best

GBestX

2: Evaluate initial fitness fitness

3: Initialize curve, no improve count, and record start time

4: for i = 1 to Max iter do

5: if no improve count ≥ max no improve or (current time −

start time) > max time then

6: break

7: end if

8: Update α = 2 × (1 − i)

9: Copy X to X new

10: for each particle j do

11: Select a random strategy St from {1, 2, 3, 4}

12: if St == 1 then

13: Apply Eq(5)

14: else if St == 2 then

15: Apply Eq(6)

16: else if St == 3 then

17: Apply Eq(7)

18: else

19: Apply Eq(8)

20: end if

21: Update velocity V [j] using PSO equations

22: X new[j] = X[j] + V [j]

23: end for

24: Evaluate new fitness fitness new

25: Perform local search using Simulated Annealing on the best individual

26: Update personal bests PBest and global best GBestX

27: Update X and fitness with new values

28: Store best fitness in curve[i]

29: if curve[i] == curve[i − 1] then

30: no improve count+ = 1

31: else

32: no improve count = 0

33: end if

34: end for

35: return Best pos = GBestX, Best score = GBestF , curve

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

Figure 1: POPSO Flowchart

4. METHODS

4.1 Approach

Figure 2 illustrates the primary phases of the proposed approach implemented in this

investigation. This methodology includes three phases. During the initial phase, four bio-

inspired algorithms were implemented to identify the most advantageous attributes. During

the second phase, four machine learning classifiers were implemented for training. The

performance metrics were ultimately employed to validate the algorithms.

Figure 2: Proposed approach

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

This research employed the TUNADROMD [34] dataset, an exhaustive collection for

classifying applications as goodware or malware. It is significant for cybersecurity and machine

learning research due to its 4465 instances and 242 attributes. This dataset has two primary

categories of features: API-based and permission-based. Two hundred fourteen permission-

based features provide a comprehensive overview of the different permissions that an

application may request, including access to the network state, camera, and precise location.

These capabilities facilitate the identification of potential permission abuse by malevolent

applications. Furthermore, the dataset comprises 27 API-based features. These attributes are

derived from the application’s utilization of particular API calls, which can indicate its intent

and behavior. Malware may employ specific API calls more frequently to facilitate activities

such as communicating with external servers or accessing sensitive information. In this dataset,

the target attribute is a binary category that differentiates between malware and goodware.

This renders the TUNADROMD dataset advantageous for developing and testing models

designed to identify and mitigate malicious software.

4.2.1 Features selection

An abundant increase in Android malware data involves the incorporation of various

attributes and features. Most attributes do not contribute to the results of predictive

applications, leading to increased computation time and resources.

Hence, the selection of a subset of features is required to achieve high accuracy rates. In

this research Grey Wolf Optimizer (GWO), and Parrot Optimization Algorithm (POA) were

implemented on the Android Malware Dataset to select the best subset of features. Features in

the dataset were reduced by applying a fitness function designed for a decision tree classifier,

which aims to maximize the accuracy of the model. The fitness function evaluates each subset

of features by training a decision tree classifier on the training set (70% of the data) and

calculating the accuracy on the test set (30% of the data). The fitness score is computed as 1 -

accuracy, where accuracy is the proportion of correct predictions made by the classifier.

Mathematically, the fitness function can be expressed as:

Fitness(𝑆) = 1 −
1

𝑁test
 𝑖=1𝛿(𝑦�̇�𝑦�̂�) (12)

where 𝑆 is the subset of selected features, 𝑁test is the number of test samples, 𝑦𝑖 is the true

label of the 𝑖-th test sample, �̂�𝑖 is the predicted label of the 𝑖-th test sample, and 𝛿(𝑦𝑖 , 𝑦∧ 𝑖) is the

Kronecker delta function, which is 1 if 𝑦𝑖 = 𝑦∧ 𝑖 and 0 otherwise. For the Android malware

dataset, PSO, GWO, and PO Proposed were applied to the training set.

4.2.2 Classification

The subsequent stage initiates the classification process, which involves training the

features using diverse classifiers. We have effectively identified the most appropriate features

in the Android malware dataset and purified all potentially chaotic data due to the feature

selection process in the previous phase. This is the reason for this. We conducted experiments

with a diverse array of parameters in GWO, PSO, and PO Proposed, including the number of

iterations (the replication of a process to produce an outcome) and population size (the arbitrary

construction of populations to determine the optimal population size based on the problem).

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

In order to ascertain the optimal configuration for feature selection and classification, we

implemented experiments with populations of 30 and 60 and iterations of 5, 15, and 30.

4.2.3 Evaluation

Four performance metrics were employed to assess the PO, DE, and GWO algorithms:

precision, recall, F-score, and accuracy. Accuracy is a statistical bias metric that quantifies the

percentage of a test’s success rate. Low accuracy values suggest a discrepancy between the

actual and result sets. Table 1 illustrates the confusion matrix for classification, which

represents the classification of the potential outcome of recommending an item to a user.

Accuracy employs four test measures.

The Accuracy metric quantifies the frequency with which the model’s predictions are

accurate in every class. The metric is determined through division
Table 1: Confusion matrix for classification.

 Recommended Not Recommended

Preferred True Positive (TP) False Negative (FN)

Not Preferred False Positive (FP) True Negative (TN)

of the sum of the accurate predictions (including True Positives and True Negatives) by

the overall count of predictions generated [35].

Accuracy =
 True Positives + True Negatives

 Total Predictions
 (13)

4.2.4 The F-score

The F-score [36], a solitary digit, concisely evaluates a system or model's ability to

generate precise optimistic predictions and identify every positive instance. The algorithm

integrates two fundamental metrics, namely recall (the capacity to identify all positive cases)

and precision (the accuracy of optimistic predictions). By achieving an equilibrium between

these two variables, the F1 score offers a unified metric for evaluating performance. Elevated

values on a scale of 0 to 1 indicate superior performance. It serves as a practical instrument for

assessing the efficacy of classification systems. Defined by this formula is the F-score:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ⋅
 Precision × Recall

 Precision + Recall
 (14)

4.2.5 Precision

Indicates the proportion of positive cases predicted by the model that turned out to be

true [37]. It quantifies the precision with which the model generates affirmative predictions.

The formula for precision is:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (15)

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

4.2.6 Recall

As with sensitivity, recall [38] quantifies the accuracy with which the model detects true

positives. It provides the number of accurate optimistic predictions the model makes relative

to the total number of positive cases. The formula for recall is:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (16)

5. RESULTS

The Android Malware Dataset was employed to evaluate the GWO, PSO, and PO

Proposed algorithms. In this context, these metaheuristic algorithms have not been extensively

compared for feature selection, to the best of our knowledge. Five classifiers were employed to

evaluate the feature selection algorithms: Decision Tree (DT), Gradient Boosting,

HistGradientBoosting, Random Forest (RF), and XGBoost. In order to guarantee the

impartiality of the outcomes, the algorithms were trained with identical methodologies. The

scikit learn library in Python, which includes built in libraries for feature selection algorithms,

had the classifiers available. The parameters’ values were determined through experimentation

and are contingent upon the unique characteristics of each algorithm. For Android malware,

GWO, PSO, and PO Proposed were used, and the classifiers employed were Decision Tree,

Gradient Boosting, HistGradientBoosting, Random Forest, and XGBoost.

The tables below summarize the performance metrics of different classifiers using PO

PSO, including Decision Tree, Gradient Boosting, HistGradientBoosting, Random Forest, and

XGBoost, evaluated over iterations of 5, 15, and 30. The metrics presented include Accuracy,

Precision, Recall, and F1 Score, all rounded to two decimal places. Table 2 provides the metrics

for a dataset containing a population of 30 instances, while Table 3 presents the metrics for a

population of 60 instances.

Table 2: Performance of Different Classifiers with Various Iterations on 30 Population using POPSO

Classifier Iterations Accuracy Precision Recall F1 Score

 5 0.99 0.99 0.66 0.66

Decision Tree 15 0.99 0.99 0.66 0.66

 30 0.99 0.99 0.66 0.66

 5 0.98 0.97 0.65 0.64

Gradient Boosting 15 0.98 0.97 0.65 0.64

 30 0.98 0.97 0.65 0.64

 5 0.99 0.99 0.66 0.66

HistGradientBoosting 15 0.99 0.99 0.66 0.66

 30 0.99 0.99 0.66 0.66

 5 0.99 0.99 0.66 0.66

Random Forest 15 0.99 0.99 0.66 0.66

 30 0.99 0.99 0.66 0.66

 5 0.99 0.99 0.65 0.65

XGBoost 15 0.99 0.99 0.66 0.65

 30 0.99 0.99 0.66 0.66

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

Table 3: Performance of Different Classifiers with Various Iterations on 60 Population using POPSO

Classifier Iterations Accuracy Precision Recall F1 Score

 5 0.99 0.99 0.66 0.66

Decision Tree 15 0.99 0.99 0.66 0.66

 30 0.99 0.99 0.66 0.66

 5 0.98 0.97 0.65 0.64

Gradient Boosting 15 0.98 0.97 0.65 0.64

 30 0.98 0.97 0.65 0.64

 5 0.99 0.99 0.66 0.66

HistGradientBoosting 15 0.99 0.99 0.66 0.66

 30 0.99 0.99 0.66 0.66

 5 0.99 0.99 0.66 0.66

Random Forest 15 0.99 0.99 0.66 0.66

 30 0.99 0.99 0.66 0.66

 5 0.99 0.99 0.65 0.65

XGBoost 15 0.99 0.99 0.66 0.65

 30 0.99 0.99 0.66 0.66

The table below summarizes the performance metrics of different classifiers using GWO,

including Decision Tree, Gradient Boosting, HistGradientBoosting, Random Forest, and

XGBoost, evaluated over iterations of 5, 15, and 30. The metrics presented include Accuracy,

Precision, Recall, and F1 Score, all rounded to two decimal places. The dataset used for these

evaluations contains a population of 30 instances.

Table 4: Performance of Different Classifiers with Various Iterations on Population of 30 Instances using GWO

Classifier Iterations Accuracy Precision Recall F1

Score Population of 30 Instances

 5 0.94 0.95 0.63 0.63

Decision Tree 15 0.94 0.95 0.63 0.63

 30 0.94 0.95 0.63 0.63

 5 0.93 0.93 0.62 0.62

Gradient Boosting 15 0.93 0.93 0.62 0.62

 30 0.93 0.93 0.62 0.62

 5 0.94 0.95 0.63 0.63

HistGradientBoosting 15 0.94 0.95 0.63 0.63

 30 0.94 0.95 0.63 0.63

 5 0.94 0.95 0.63 0.63

Random Forest 15 0.94 0.95 0.63 0.63

 30 0.94 0.95 0.63 0.63

 5 0.94 0.95 0.63 0.63

XGBoost 15 0.94 0.95 0.63 0.63

 30 0.94 0.95 0.63 0.63

The table below summarizes the performance metrics of different classifiers using GWO,

including Decision Tree, Gradient Boosting, HistGradientBoosting, Random Forest, and

XGBoost, evaluated over iterations of 5, 15, and 30. The metrics presented include Accuracy,

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

Precision, Recall, and F1 Score, all rounded to two decimal places. The dataset used for these

evaluations contains a population of 60 instances.
Table 5: Performance of Different Classifiers with Various Iterations on Population of 60 Instances using GWO

Classifier Iterations Accuracy Precision Recall F1

Score Population of 30 Instances

 5 0.94 0.95 0.63 0.63

Decision Tree 15 0.94 0.95 0.63 0.63

 30 0.94 0.95 0.63 0.63

 5 0.93 0.93 0.62 0.62

Gradient Boosting 15 0.93 0.93 0.62 0.62

 30 0.93 0.93 0.62 0.62

 5 0.94 0.95 0.63 0.63

HistGradientBoosting 15 0.94 0.95 0.63 0.63

 30 0.94 0.95 0.63 0.63

 5 0.94 0.95 0.63 0.63

Random Forest 15 0.94 0.95 0.63 0.63

 30 0.94 0.95 0.63 0.63

 5 0.94 0.95 0.63 0.63

XGBoost 15 0.94 0.95 0.63 0.63

 30 0.94 0.95 0.63 0.63

The bar chart in Figure 3 illustrates the accuracy of various classifiers under two

optimization methods: PO PSO and GWO. The classifiers included are Decision Tree (DT),

Gradient Boosting (GB), HistGradientBoosting (HGB), Random Forest (RF), and XGBoost (XG).

On the left side of the chart, the accuracy of classifiers optimized using PO PSO is shown. These

classifiers display higher accuracy values, generally ranging from approximately 0.96 to 0.99.

On the right side, the accuracy of classifiers optimized using GWO is depicted, with lower

accuracy values ranging from about 0.89 to 0.94. The chart effectively highlights the difference

in performance between the two optimization methods, with PO PSO consistently yielding

higher accuracy across all classifiers compared to GWO.

The bar chart in Figure 4 illustrates the accuracy of various classifiers under two

optimization methods: PO PSO and GWO. The classifiers included are Decision Tree (DT),

Gradient Boosting (GB), HistGradientBoosting (HGB), Random Forest (RF), and XGBoost (XG).

On the left side of the chart, the accuracy of classifiers optimized using PO PSO is shown. These

classifiers display higher accuracy values, generally ranging from approximately 0.96 to 0.99.

On the right side, the accuracy of classifiers optimized using GWO is depicted, with lower

accuracy values ranging from about 0.89 to 0.94. The chart effectively highlights the difference

in performance between the two optimization methods, with PO PSO consistently yielding

higher accuracy across all classifiers compared to GWO.

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

Figure 3: Accuracy performance for GWO and PO PSO 30 population

Figure 4: Accuracy performance for GWO and PO PSO 60 population

6. CONCLUSION

This research demonstrates the significant potential of bio-inspired Algorithms for

optimizing the detection and classification of Android malware. We have demonstrated that

the Parrot Optimizer (PO) and its hybrid combination with Particle Swarm Optimization

(POPSO) can significantly enhance the efficacy of feature selection and the overall accuracy of

detection by introducing and evaluating these methods. The PO PSO algorithm consistently

outperforms conventional methods, including the Grey Wolf Optimizer (GWO), as evidenced

by extensive experiments that compared various classifiers, including Decision Tree, Gradient

Boosting, HistGradientBoosting, Random Forest, and XGBoost. The PO PSO approach

substantially enhanced critical performance metrics, such as precision, recall, accuracy, and F1

score. In particular, it resulted in an average improvement in accuracy of 5-10%, with some

classifiers achieving up to 99% accuracy. These results emphasize the significance of employing

exhaustive feature selection, robust machine learning models, and large datasets in developing

effective malware detection systems.

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

In summary, the hybrid PO PSO algorithm is a potent instrument for addressing intricate

optimization issues in malware detection, providing improved detection capabilities, and

facilitating the development of cybersecurity measures. In order to offer even more effective

protection against evolving cyber threats, future research could investigate the application of

the PO PSO algorithm to other types of malwares, further enhancements, and integration with

real time detection systems.

REFERENCES

[1] V. Sihag, M. Vardhan, and P. Singh, “A survey of android application and malware

hardening,” Comput Sci Rev, vol. 39, p. 100365, 2021.
[2] D. Farhat and M. S. Awan, “A Brief Survey on Ransomware with the Perspective of Internet

Security Threat Reports,” in 9th International Symposium on Digital Forensics and Security, ISDFS

2021, 2021, pp. 1–6. doi: 10.1109/ISDFS52919.2021.9486348.

[3] A. Heidari, N. J. Navimipour, and M. Unal, “Applications of ML/DL in the management of

smart cities and societies based on new trends in information technologies: A systematic

literature review,” Sustain Cities Soc, vol. 85, p. 104089, 2022.

[4] S. Abijah Roseline and S. Geetha, “A comprehensive survey of tools and techniques mitigating

computer and mobile malware attacks,” Computers and Electrical Engineering, vol. 92, p. 107143,

2021, doi: 10.1016/j.compeleceng.2021.107143.

[5] M. J. Best, K. T. Aziz, J. H. Wilckens, E. G. McFarland, and U. Srikumaran, “Increasing

incidence of primary reverse and anatomic total shoulder arthroplasty in the United States,” J

Shoulder Elbow Surg, vol. 30, no. 5, pp. 1159–1166, 2021.

[6] E. P. Occhiboi and R. D. Clement, “Anatomic Total Shoulder Arthroplasty and Reverse Total

Shoulder Arthroplasty,” JBJS Journal of Orthopaedics for Physician Assistants, vol. 8, no. 1, p. 0025,

2020, doi: 10.2106/jbjs.jopa.19.00025.

[7] A. Nassar and M. Kamal, “Machine Learning and Big Data Analytics for Cybersecurity Threat

Detection: A Holistic Review of Techniques and Case Studies,” Journal of Artificial Intelligence

and Machine Learning in Management, vol. 5, no. 1, pp. 51–63, 2021, doi: 10.1155/2021/1234567.

[8] D. J. Wu, C. H. Mao, T. E. Wei, H. M. Lee, and K. P. Wu, “DroidMat: Android malware

detection through manifest and API calls tracing,” in Proceedings of the 2012 7th Asia Joint

Conference on Information Security, AsiaJCIS 2012, 2012, pp. 62–69. doi: 10.1109/AsiaJCIS.2012.18.

[9] S. Cesare and Y. Xiang, “Classification of malware using structured control flow,” in

Conferences in Research and Practice in Information Technology Series, in CRPIT, vol. 107. 2010, pp.

61–70. [Online]. Available:

https://crpit.scem.westernsydney.edu.au/abstracts/CRPITV107Cesare.html

[10] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-based malware

detection system for android,” in Proceedings of the ACM Conference on Computer and

Communications Security, 2011, pp. 15–25. doi: 10.1145/2046614.2046619.

[11] Z. Aung and W. Zaw, “Permission-Based Android Malware Detection,” International Journal of

Scientific & Technology Research, vol. 2, no. 3, pp. 228–234, 2013, [Online]. Available:

www.ijstr.org

[12] R. Verma, V. Nagar, and S. Mahapatra, “Introduction to supervised learning,” Data Analytics in

Bioinformatics: A Machine Learning Perspective, pp. 1–34, 2021.

[13] I. R. A. Hamid, N. S. Khalid, N. A. Abdullah, N. H. A. Rahman, and C. C. Wen, “Android

Malware Classification Using K-Means Clustering Algorithm,” in IOP Conference Series:

Materials Science and Engineering, 2017, p. 12105. doi: 10.1088/1757-899X/226/1/012105.

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

[14] M. N. AlJarrah, Q. M. Yaseen, and A. M. Mustafa, “A Context-Aware Android Malware

Detection Approach Using Machine Learning,” Information (Switzerland), vol. 13, no. 12, p. 563,

2022, doi: 10.3390/info13120563.

[15] J. D. Koli, “RanDroid: Android malware detection using random machine learning classifiers,”

in 2018 Technologies for Smart-City Energy Security and Power (ICSESP), 2018, pp. 1–6.

[16] H. Han, S. Lim, K. Suh, S. Park, S. Cho, and M. Park, “Enhanced android malware detection:

An SVM-based machine learning approach,” in 2020 IEEE international conference on big data and

smart computing (BigComp), 2020, pp. 75–81.

[17] W. Wang, M. Zhao, and J. Wang, “Effective android malware detection with a hybrid model

based on deep autoencoder and convolutional neural network,” J Ambient Intell Humaniz

Comput, vol. 10, no. 8, pp. 3035–3043, 2019, doi: 10.1007/s12652-018-0803-6.

[18] B. Urooj, M. A. Shah, C. Maple, M. K. Abbasi, and S. Riasat, “Malware Detection: A Framework

for Reverse Engineered Android Applications Through Machine Learning Algorithms,” IEEE

Access, vol. 10, pp. 89031–89050, 2022, doi: 10.1109/ACCESS.2022.3149053.

[19] A. M. R. AlSobeh, K. Gaber, M. M. Hammad, M. Nuser, and A. Shatnawi, “Android malware

detection using time-aware machine learning approach,” Cluster Comput, pp. 1–22, 2024, doi:

10.1007/s10586-024-04484-6.

[20] M. R. Keyvanpour, M. Barani Shirzad, and F. Heydarian, “Android malware detection

applying feature selection techniques and machine learning,” Multimed Tools Appl, vol. 82, no.

6, pp. 9517–9531, 2023, doi: 10.1007/s11042-022-13767-2.

[21] A. Gómez and A. Muñoz, “Deep Learning-Based Attack Detection and Classification in

Android Devices,” Electronics (Switzerland), vol. 12, no. 15, p. 3253, 2023, doi:

10.3390/electronics12153253.

[22] A. Guerra-Manzanares, H. Bahsi, and M. Luckner, “Leveraging the first line of defense: a study

on the evolution and usage of android security permissions for enhanced android malware

detection,” Journal of Computer Virology and Hacking Techniques, vol. 19, no. 1, pp. 65–96, 2023,

doi: 10.1007/s11416-022-00432-3.

[23] H. H. R. Manzil and S. Manohar Naik, “Android malware category detection using a novel

feature vector-based machine learning model,” Cybersecurity, vol. 6, no. 1, p. 6, 2023, doi:

10.1186/s42400-023-00139-y.

[24] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning based android malware

detection using real devices,” Comput Secur, vol. 89, p. 101663, 2020, doi:

10.1016/j.cose.2019.101663.

[25] A. Guerra-Manzanares, H. Bahsi, and S. Nõmm, “KronoDroid: Time-based hybrid-featured

dataset for effective android malware detection and characterization,” Comput Secur, vol. 110,

p. 102399, 2021, doi: 10.1016/j.cose.2021.102399.

[26] A. Guerra-Manzanares, M. Luckner, and H. Bahsi, “Android malware concept drift using

system calls: Detection, characterization and challenges,” Expert Syst Appl, vol. 206, p. 117200,

2022, doi: 10.1016/j.eswa.2022.117200.

[27] J. Lian et al., “Parrot optimizer: Algorithm and applications to medical problems,” Comput Biol

Med, vol. 172, p. 108064, 2024, doi: 10.1016/j.compbiomed.2024.108064.

[28] A. Alhudhaif et al., “A particle swarm optimization based deep learning model for vehicle

classification,” Computer Systems Science and Engineering, vol. 40, no. 1, pp. 223–235, 2022, doi:

10.32604/CSSE.2022.018430.

[29] G. E. Atteia, H. A. Mengash, and N. A. Samee, “Evaluation of using Parametric and Non-

parametric Machine Learning Algorithms for Covid-19 Forecasting,” International Journal of

Advanced Computer Science and Applications, vol. 12, no. 10, pp. 647–657, 2021, doi:

10.14569/IJACSA.2021.0121071.

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

[30] M. Dong, L. Yao, X. Wang, B. Benatallah, S. Zhang, and Q. Z. Sheng, “Neural Decision Forest

with Gradient Enhancement,” IEEE Trans Serv Comput, vol. 16, no. 1, pp. 330–342, 2021, doi:

10.1109/TSC.2019.2898890.

[31] A. Guryanov, “Histogram-based algorithm for building gradient boosting ensembles of

piecewise linear decision trees,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, pp. 39–50. doi:

10.1007/978-3-030-37334-4_4.

[32] E. K. Sahin and I. Colkesen, “Performance Evaluation of Ensemble Learning Algorithms Based

on Advanced Decision Trees for the Purpose of Mapping the Susceptibility of Landslides,”

Geocarto Int, vol. 36, no. 2, pp. 174–193, 2021, doi: 10.1080/10106049.2019.1612482.

[33] Z. Arif Ali, Z. H. Abduljabbar, H. A. Tahir, A. Bibo Sallow, and S. M. Almufti, “eXtreme

Gradient Boosting Algorithm with Machine Learning: a Review,” Academic Journal of Nawroz

University, vol. 12, no. 2, pp. 320–334, 2023, doi: 10.25007/ajnu.v12n2a1612.

[34] P. Borah, D. K. Bhattacharyya, and J. K. Kalita, “Malware dataset generation and evaluation,”

in 4th IEEE Conference on Information and Communication Technology, CICT 2020, 2020, pp. 1–6.

doi: 10.1109/CICT51604.2020.9312053.

[35] M. Grandini, E. Bagli, and G. Visani, “Metrics for Multi-Class Classification: an Overview,”

arXiv preprint arXiv:2008.05756, 2020, [Online]. Available: http://arxiv.org/abs/2008.05756

[36] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over

F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, 2020,

doi: 10.1186/s12864-019-6413-7.

[37] Ž. Vujović, “Classification Model Evaluation Metrics,” International Journal of Advanced

Computer Science and Applications, vol. 12, no. 6, pp. 599–606, 2021, doi:

10.14569/IJACSA.2021.0120670.

[38] S. Wenkel, K. Alhazmi, T. Liiv, S. Alrshoud, and M. Simon, “Confidence score: The forgotten

dimension of object detection performance evaluation,” Sensors, vol. 21, no. 13, p. 4350, 2021.

