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ABSTRACT — The pervasive use of Android devices has resulted in a substantial increase in cyber threats, 
notably Android malware, which threatens user data privacy and security. Traditional detection methods that 
rely on static code or behavioral analysis have become less effective as malware evolves with sophisticated 
and polymorphic features. This research introduces a novel method for improving the detection and 
classification of Android malware using bio-inspired optimization algorithms. We introduce the Parrot 
Optimizer (PO) and its hybrid combination with Particle Swarm Optimization (POPSO) to enhance the overall 
detection accuracy and feature selection. Using POPSO and GWO methods, we evaluated the performance of 
a variety of classifiers, such as Decision Tree, Gradient Boosting, HistGradientBoosting, Random Forest, and 
XGBoost, across a range of population sizes and iterations. The PO PSO approach significantly improves 
detection capabilities, as evidenced by our experiments. Specific classifiers achieve up to 99% accuracy, while 
the average accuracy improvement is 5-10%. The significance of exhaustive feature selection, robust machine-
learning models, and large datasets in developing effective malware detection systems is underscored by these 
results. 
 
Keywords — Android malware; bio-inspired optimization; Parrot Optimizer; Particle Swarm Optimization; 
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1. INTRODUCTION 

The Android ecosystem has not only facilitated innovation and user empowerment, but 

it has also inadvertently allowed a relentless surge of cyber threats to enter due to its open and 

adaptable nature. Android malware is a pervasive and evolving menace among these threats 

[1]. 

As per Kaspersky Security Network, the number of mobile malware blocks exceeded 5.5 

million in Q3 2022, indicating a recent exponential rise in the prevalence of mobile malware [2]. 

Android malware is a type of malicious software intended to exploit vulnerabilities, steal 

sensitive information, disrupt operations, and occasionally extort users [3]. 

These malicious programs, which are frequently concealed within apparently innocent 

applications, present a substantial risk to the integrity of the Android ecosystem, personal 

privacy, and data security [4]. 

Identifying and categorizing Android malware has never been more pressing in light of 

this imminent menace. More than conventional security measures are required as the Android 
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malware landscape continues to evolve with increasing sophistication [5]. Therefore, creating 

effective malware detection and classification methods is paramount. By employing 

sophisticated analysis methods and comprehending the inner workings of malware, we can 

strengthen the resilience of the Android ecosystem, safeguard user data, and mitigate the 

hazards they present [6]. 

The landscape of Android malware analysis has presented researchers with new 

opportunities and challenges. Traditional methods for detecting and classifying Android 

malware frequently employed machine learning and deep learning algorithms, as well as 

features such as n-grams, API calls, and sandbox outputs [7]. Although these methods have 

been effective, they are not without their limitations. As Android malware becomes more 

sophisticated, it is not solely about the static analysis of code or the behavior of applications but 

also about their visual appearance to the human eye [8]. 

A novel approach that is garnering attention is the use of bio-inspired optimization 

algorithms to improve the detection and classification of Android malware. The hybrid method 

known as PO PSO is developed by combining the Parrot Optimizer (PO) with Particle Swarm 

Optimization (PSO) in this innovative technique. These optimization methods introduce a new 

dimension to malware analysis and introduce new challenges. The application of PO and PO 

PSO raises concerns regarding the efficacy of feature selection, the capacity to manage large 

datasets, and the necessity of rigorous evaluation techniques. Android malware is evolving 

with increasingly complex and polymorphic characteristics, prompting the research 

community to investigate these optimization-based techniques. This change not only enhances 

detection and provides more profound insights but also underscores the importance of resilient 

machine learning and deep learning models, extensive datasets, and comprehensive feature 

selection. This research makes the following contributions to the field of Android malware 

detection: 

• Implementation of Parrot Optimizer (PO): Introduced and assessed the Parrot 

Optimizer (PO) for feature selection in Android malware detection, illustrating its 

efficacy in identifying pertinent features. 

• Hybrid Optimization Approach: A hybrid optimization method was developed to 

improve the quality of solutions and the pace of convergence by combining particle 

swarm optimization (POPSO) with particle optimization (PO). 

• Performance Comparison: Conducted extensive experiments to compare the 

performance of various classifiers using PO PSO and GWO across various iterations and 

population sizes. 

• Dataset Utilization: Highlighted the importance of permission-based and API-based 

features in malware detection by utilizing the TUNADROMD dataset, which contains 

4465 instances and 241 attributes. 

• Enhanced Malware Detection: Enhanced the ability to detect and classify Android 

malware effectively, thereby contributing to more effective cybersecurity measures. 

The paper is organized as follows: Existing methods and approaches for Android 

malware detection are examined in the Related Work section, emphasizing conventional 

methods’ constraints. The preliminary section offers a comprehensive explanation of the bio-

inspired optimization algorithms employed in this study, including the Parrot Optimizer (PO), 

Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO). Additionally, it 
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provides an overview of the implemented classifiers, including Decision Tree, Gradient 

Boosting, HistGradientBoosting, Random Forest, and XGBoost. The Methods section delineates 

the comprehensive methodology, including the dataset, feature selection process, classification 

techniques, and performance evaluation metrics. The experimental results are presented in the 

Results section of the paper, which compares the performance of various classifiers using PO 

PSO and GWO and illustrates the efficacy of the proposed method. Lastly, the Conclusion 

provides a concise summary of the primary findings and contributions of the research, with a 

particular emphasis on the hybrid POPSO algorithm’s enhancement of detection accuracy. It 

also suggests potential areas for future research to improve Android malware detection 

systems further. 

2. RELATED WORK 

Numerous types of malwares exist, including code, scripts, active content, and other 

software. It is a general term that refers to various malicious software, such as computer viruses, 

ransomware, worms, Trojan horses, rootkits, keyloggers, dialers, spyware, adware, and other 

harmful programs [9]. 

Algorithm for the classification of Android malware. Table 1 illustrates the comparative 

analysis of the Android malware classification approach. Droid Mat was proposed by Wu et al. 

[8] as a method for detecting Android malware by utilizing behavior-based features. Static 

information is extracted from each application’s manifest file and API calls pertaining to 

permissions by Droid Mat. In order to improve the malware modeling capability, the K-means 

algorithm is implemented. Then, the Singular Value Decomposition (SVD) method is employed 

to ascertain the number of clusters in the low rank approximation. The final step employs the 

k-nearest Neighbor (kNN) algorithm to determine whether the application is benign or 

malevolent. They can obtain an accuracy of 97.87% when tested on the Contagio Mobile dataset. 

Authors in [10] proposed a dynamic analysis of application behavior to detect malware 

in the Android platform (Crowdroid). The Crowdroid is integrated into the framework for 

crowdsourcing to accumulate data from genuine users. They obtained an accuracy of 100% 

when tested on two types of data sets: artificial malware created for testing purposes and actual 

malware from Virus Total. The investigation was, however, evaluated on a limited quantity of 

data. Machine learning techniques were employed to develop a framework for the classification 

of Android applications in additional work by Aung et al. [11]. This system monitors a variety 

of permission-based features and events that are sourced from Android applications. The 

application’s classification as benign or malware was determined by testing it on 200 dataset 

samples using machine learning classifiers. Our work differs from that of Aung et al. [11] in 

that we classify the Virus Total and Malgenome dataset into three categories: ransomware, 

scareware, and goodware using the K-means algorithm. In addition, Schlesinger et al. [12] 

employed live data with a permission-based feature, whereas we employed a behavior-based 

feature. Next, we employed the K-Means clustering algorithm to organize the virus. We 

selected the Random Forest algorithm because it is the most appropriate algorithm for both 

datasets. 

Authors in  [13] research on the application of K-Means clustering to the classification of 

Android malware is a significant contribution to the field. Their work, which distinguished 

between goodware, scareware, and ransomware, focused on features such as encryption, lock 

detection, and menacing texts, using datasets such as Virus Total and Malgenome. The 
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proposed model’s exceptional accuracy, notably with the Virus Total dataset, at 98.12%, 

validates the use of clustering techniques in malware categorization, instilling confidence in 

their robustness. 

Significant strides have been made in the field of Android malware detection, with 

researchers employing a variety of methodologies, such as feature-based approaches, hybrid 

and deep learning models, and considering the malware’s temporal evolution. The following 

points highlight and categorize notable research contributions based on their methods and 

conclusions, underscoring the significance of this research. 

• Feature-Based Detection Approaches: To increase the accuracy of malware detection, 

researchers have employed innovative methods. For instance, this paper [14] suggests a 

machine learning-based method that combines permissions and API calls with 

contextual data, achieving a detection accuracy of 99.4%. Similarly, [15] presents 

’RanDroid,’ a system that utilizes numerous capabilities, such as permissions and API 

calls, to achieve an impressive 97.7% accuracy. This work [16] focuses on using API calls 

as features to identify malicious applications in a different study. The authors 

demonstrate the significance of feature selection in managing high dimensional datasets 

by using Support Vector Machines (SVM) and achieving competitive results. 

• Hybrid and Deep Learning Models: To address the complexity of Android malware, 

the combination of deep learning and conventional machine learning techniques has 

been investigated. [17] offers a hybrid model that improves feature extraction 

performance and attains higher detection accuracy by fusing convolutional neural 

networks (CNN) and deep autoencoders (DAE). Another strategy covered by [18] 

combines elements like permissions and intents with ensemble learning techniques to 

identify sophisticated malware. This study highlights the efficacy of ensemble 

approaches, with a high accuracy rate of 96.24% and a low false positive rate. 

• Time-aware and Evolutionary Approaches: Acknowledging the temporal dynamics 

involved in malware growth, [19] presents the Time-Aware Machine Learning (TAML) 

framework, which uses time correlated variables to detect malware over years with a 

high F1 score. This method emphasizes the crucial need to consider temporal variables 

while improving the resilience of detection algorithms. Additionally, [20] investigates 

how feature selection techniques can be applied to a random forest algorithm, showing 

how careful feature selection can increase detection accuracy. In the meantime, this 

paper [21], presents a supervised learning technique verified on numerous datasets and 

investigates the difficulties in maintaining detection robustness against evolving threats. 

• Concept Drift and Adaptation: This paper [22] examines the development of Android 

security permissions and their effects on long term malware detection systems to 

address the problem of concept drift. The research shows that even permissions specified 

in previous iterations of Android might be helpful in creating long lasting detection 

models. Furthermore, [23] introduces a feature vector generating method based on 

Huffman encoding that uses Random Forest classifiers to achieve 98.70% detection 

accuracy. This new method improves our comprehension of malware’s dynamic 

behavior patterns. This research [24] delves deeper into the problem of concept drift by 

introducing the KronoDroid dataset, which includes static and dynamic features over a 

long period. This collection aids the development of reliable detection algorithms and 

the research of malware evolution. Lastly, [25] and [26] examine how effective detection 
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models are over the long run, emphasizing the need for ongoing adaption to new 

malware patterns. 

3. PRELIMINARIES 

This section describes two bio-inspired algorithms for Android Malware: The Parrot 

optimizer Proposed, Grey Wolf Optimizer and all the classifiers use in this work. 

 

 

 

3.1 The parrot optimizer (PO) 

This section explains the overall background of the PO and the formulated optimization 

models. 

2.1 Inspiration 

A popular choice among pet owners, the Pyrrhura Molinae is a well-liked parrot species 

known for its attractive features, close connection with its owners, and simplicity of training. 

Studies and breeding endeavors conducted in the past have demonstrated that Pyrrhura 

Molinae exhibits four distinct behavioral traits: a fear of strangers, foraging, remaining, 

and communicating [27]—behaviors such as these. 

• The foraging behavior of domesticated Pyrrhura Molinae is captivating, as individuals 

opt to forage in small groups in areas where food is abundant [27]. Utilizing their 

owner’s location and the group’s presence, they can locate the sustenance by proceeding 

toward it. They improve their quest by employing visual and olfactory cues. 

• The staying behavior entails Pyrrhura Molinae haphazardly perching on various parts 

of their owner’s body. These gregarious birds generate unique calls to facilitate 

communication within their group, which serves as a means of both social interaction 

and the dissemination of information. 

• Pyrrhura Molinae flees from unfamiliar individuals and seeks safety with their 

proprietors for protection due to the natural dread of strangers, a common trait among 

birds [27]. 

• Critically, the motivation for our design is underscored by the unpredictability of 

Pyrrhura Molinae behavior, as these four behaviors occur at random in each individual 

during each iteration within domesticated colonies. 

2.2 Mathematical model of PO 

2.2.1 Population initialization 

The initialization formulation for the proposed PO can be represented as follows, taking 

into account a swarm size of N, maximum iterations of Max iter, and search space limits of lb 

(lower bound) and ub (upper bound): 

𝑋𝑖
0= lb + rand(0, 1) · (ub − lb) (1)  
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 where rand(0, 1) denotes a random number in the range [0, 1] and 𝑋𝑖
0  denotes the 

position of the ith Pyrrhura Molinae in the initial phase. 

3.1.1 Foraging behavior 

In the Parrot Optimizer (PO), the parrots predominantly estimate the approximate 

location of food by observing the food’s position or contemplating the owner’s location during 

the foraging behavior. They then proceed to the designated location by air. The equation that 

governs positional movement is as in Eq. (1): 

 

𝑋𝑖
𝑡+1 = (𝑋𝑖

𝑡 − 𝑋best ) ⋅ Levy(dim) + rand(0,1) ⋅ 1 −
𝑡

 Maxiter 

2𝑡
 Maxiter 

⋅𝑋mean 
𝑡

 (1) 

 

 

In this equation: 

• 𝑋𝑖
𝑡 denotes the current position of the 𝑖-th parrot. 

• 𝑋𝑖
𝑡+1 represents the updated position after the next iteration. 

• 𝑿mean 
𝑡  is the average position of the current population. 

• Levy(dim) denotes the Levy distribution, used to describe the flight of parrots. 

• 𝑋best  is the best position found from the start until the current iteration and also 

represents the owner's current position. 

• 𝑡 is the current number of iterations. 

The term ( 𝑋𝑖
𝑡 − 𝑋best  ) Levy(dim)  indicates movement based on the parrot's position 

relative to the owner. The term rand (0,1) ⋅ 1 −
𝑡

 Maxiter 
 Maxitert ⋅ 𝑋𝑡

𝑡  mean represents the 

observation of the population's overall position to further refine the search for food. 

The average location of the current swarm, denoted by 𝑋𝑡 mean, is attained using the 

formula shown in Eq. (2) : 

 

𝑋mean 
𝑡 =

1

𝑁𝑘=1
𝑋𝑘

𝑡     (2) 

 

The Levy distribution can be obtained based on the rule in Eq. (3), where 𝛾 is assigned 

the value of 1.5. 

 

Levy(dim) =
𝜇 ⋅ 𝜎

|𝑣|1/𝛾
    (3) 

3.1.2 Staying Behavior 

The Pyrrhura Molinae is a highly sociable creature. Its primary lingering behavior is an 

abrupt flight to any part of its owner’s body, which remains stationary for a specific period. The 

process can be represented as in Eq. (4): 

 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑋best ⋅ Levy(dim) + rand(0,1) ⋅  ones (1, dim)    (4) 
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where ones (1, dim) denote the all-1 vector of dimension dim. The term 𝑋best ⋅ Levy(dim) 

denotes the flight to the host, and rand (0,1) ⋅ ones( 1, dim ) denotes the process of randomly 

stopping at a part of the host's body. 

3.2.1 Communicating Behavior 

Pyrrhura Molinae parrots are inherently social creatures distinguished by their close 

communication within their groups. This communication behavior includes communicating 

without flying and soaring to the flock. In the PO, the mean position of the current population is 

used to represent the center of the flock, and both behaviors are assumed to occur with equal 

probability. The process can be represented as: 

where 0.2 ⋅ rand(0,1) ⋅ 1 − 𝑡
 Maxiter 

⋅ (𝑋𝑖
𝑡 − 𝑋mean 

𝑡 )  denotes the process of an individual joining a 

parrot's group to communicate and 0.2 ⋅ rand(0,1) ⋅ exp −
𝑡

 rand (0,1)⋅ Max iter 
 denotes the process of 

an individual flying away immediately after communicating. Both behaviors are feasible and, as 

such, are implemented using a randomly generated 𝑃 within the range of [0,1]. 

3.1.4 Fear of Strangers' Behavior 

Pyrrhura Molinae parrots are no exception to the general rule that animals naturally dread 

strangers. Their conduct of avoiding unfamiliar individuals and seeking refuge with their 

proprietors in quest of a secure environment can be characterized as in Eq. (5): 

 

𝑋𝑡+1

𝑖
= 𝑋𝑡

𝑡

𝑖
+ rand(0,1) ⋅ cos 0.5𝜋 ⋅

𝑡

 Max iter 
⋅ 𝑋  

 best 
− 𝑋𝑖

𝑡

 − cos(rand(0,1) ⋅ 𝜋) ⋅
𝑡

Maxiter 

2

⋅ 𝑋𝑖
𝑡 − 𝑋best 

𝑋  𝑖
𝑡+1 = 𝑋𝑖

𝑡 + rand(0,1) ⋅ cos 0.5𝜋 ⋅
𝑡

 Max iter 
⋅ 𝑋best − 𝑋𝑖

𝑡

 − cos(rand(0,1) ⋅ 𝜋) ⋅
𝑡

Maxiter 
⋅ 𝑋𝑖

𝑡 − 𝑋best 

 

 

   (5) 

 

where rand(0,1) ⋅ cos 0.5𝜋 ⋅  
 Aaxter 𝑡

⋅ (𝑋best − 𝑋𝑡)  shows the process of reorienting to fly 

towards the owner, and cos (rand(0,1) ⋅ 𝜋) ⋅
𝑡

 Maxiter 2
 2 ⋅ (𝑋𝑖

𝑡 − 𝑋best ) indicates the adjustment of 

the position based on the current iteration. Shows the process of moving away from the strangers. 

3.2 Particle Swarm Optimization (PSO) 

The social behavior of birds flocking or fish schooling inspires the population-based 

optimization algorithm known as PSO. In order to resolve an extensive array of optimization issues, 

it simulates the intelligence and movement of particles within a search space. PSO is characterized 

by moving a group of particles (potential solutions) through the search space to identify the most 

optimal solution. The position of each particle is adjusted by the experience of the particle and the 

experience of its neighbors [28]. 
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3.2.1 Initialization 

Particles are initialized with random positions and velocities. Each particle has a memory of 

its best position and knows the best position found by the swarm. 

3.2.2 Velocity Update 

𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖
best − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔best − 𝑥𝑖(𝑡))    (6) 

 

Where: 

• 𝑣𝑖(𝑡) is the velocity of particle 𝑖 at time 𝑡. 

• 𝜔 is the inertia weight. 

• 𝑐1 and 𝑐2 are cognitive and social coefficients. 

• 𝑟1 and 𝑟2 are random numbers in the range [0, 1]. 

• 𝑝𝑖
best  is the best position of particle 𝑖. 

• 𝑔best  is the global best position found by the swarm. 

3.2.3 Position Update 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)    (7) 

 

Where: 

• 𝑥𝑖(𝑡) is the position of particle 𝑖 at time 𝑡. 

• 𝑣𝑖(𝑡 + 1) is the updated velocity of particle 𝑖. 

 

3.3 Parrot-PSO Optimizer (POPSO) Proposal 

The Hybrid Parrot-PSO Optimizer (POPSO) represents an advanced optimization algorithm 

that combines the Parrot Optimizer with Particle Swarm Optimization (PSO) and integrates an 

enhanced local search mechanism using Simulated Annealing (SA). This hybrid approach is 

designed to improve the convergence speed and solution quality, particularly for complex 

optimization problems. Below, we highlight the key modifications and innovations introduced in 

this new approach. 

3.4 Key Modifications and Innovations 

1. Combination of Parrot Optimizer and PSO: 

• The POPSO algorithm synergizes the exploration capabilities of the Parrot Optimizer with 

the exploitation strengths of PSO. This combination allows the algorithm to effectively 

navigate the search space and avoid local optima. 

2. Adaptive Alpha Parameter: 

• An adaptive alpha parameter is introduced, which decreases linearly over iterations. This 

helps in balancing exploration and exploitation dynamically as the search progresses in Eq. 

(8): 

 

𝛼 = 2 × 1 −
𝑖

 Max_iter 
    (8) 

 

3. Equation for Particle Position Update: 
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• The position update for each particle depends on the selected strategy St, chosen randomly 

from {1,2,3,4}. The strategies are defined as follows: 

(a) Strategy 1: 

 

𝑋new[𝑗] = 𝑋[𝑗] + 𝛼 × (𝑋[𝑗] − 𝑋[ random particle ])    (9) 

 

This strategy modifies the particle's position based on the difference from a randomly 

selected particle, using a decreasing factor 𝛼 for balancing exploration and exploitation. 

(b) Strategy 2: 

 

𝑋new [𝑗] = 𝑋[𝑗] + 𝐺𝐵𝑒𝑠𝑡𝑋 ×  Levy (dim) +  Gaussian noise   (10) 

 

Incorporates a global best position (GBestX) and a Levy flight to introduce variability, aiding 

in exploring the search space. 

(c) Strategy 3: 

 

𝑋new [𝑗] = 𝑋[𝑗] + 𝛼 × (𝑋[𝑗] − mean(𝑋))   (10) 

 

Adjusts the position based on the mean of the population, helping the particles converge 

towards the swarm's center. 

(d) Strategy 4: 

 

𝑋new [𝑗] = 𝑋[𝑗] +  random value × cos 
𝜋 × 𝑖

2 ×  Max_iter 
× ( GBest 𝑋 − 𝑋[𝑗])

−cos (𝜃) ×
𝑖

 Max_iter 

2

× (𝑋[𝑗] − 𝐺𝐵𝑒𝑠𝑡𝑋)

   (11) 

 

 

Uses cosine functions to introduce controlled oscillations, allowing fine tuning around 

the global best position. 

In each iteration, the particles’ positions are updated based on these strategies, helping 

the optimizer navigate and refine the search space effectively. The use of multiple strategies 

enhances the algorithm’s ability to avoid local optima and improves convergence speed. 

4. Enhanced Local Search using Simulated Annealing (SA): 

• The best individual in the current population undergoes a local search refinement using 

Simulated Annealing. This helps in further improving the solution quality by escaping local 

optima and enhancing convergence. 

5. Early Stopping Criteria: 

• The algorithm includes early stopping mechanisms based on two criteria: 

– No improvement observed for a defined number of iterations. 

– Maximum allowed runtime. 

6. PSO Velocity and Position Updates: 

• The velocity and position of particles are updated using standard PSO equations with 

random components for cognitive and social influences. 

These modifications in the Hybrid Parrot-PSO Optimizer (POPSO) introduce a more 

robust and adaptive optimization framework, capable of achieving superior performance in 

feature selection and other complex optimization tasks as present in algorithm 1 and Figure 1 . 
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By integrating PSO and SA into the Parrot Optimizer, the algorithm benefits from enhanced 

exploration and exploitation capabilities, leading to improved optimization results. 

3.5 Classifiers 

3.5.1 Decision Tree 
A Decision Tree [29] is a nonparametric supervised learning method employed for 

regression and classification. It creates a decision-making model that resembles a tree by 

dividing the data into subsets based on the value of input features. Each internal node 

represents a test on an attribute, each branch represents an outcome of the test, and each leaf 

node represents a class label. 

3.5.2 Gradient Boosting 
Gradient Boosting [30] is an ensemble learning technique that optimizes a loss function 

to construct a model stage-wise. It constructs a robust predictor by integrating the predictions 

of numerous poor learners, typically decision trees. The aggregate error is minimized by fitting 

each tree in the sequence to the residual errors of the previous trees. 

3.5.3 HistGradientBoosting 
Histogram-based Gradient Boosting [31], or HistGradientBoosting, is a variation of 

gradient boosting that employs histograms to segment continuous input features. This method 

is appropriate for large datasets because it can enhance training speed and decrease memory 

utilization. It is notably effective for large datasets and high dimensional data. 

3.5.4 Random Forest 
Random Forest [32],  an ensemble learning method, plays a crucial role in enhancing 

model robustness and accuracy. It achieves this by aggregating multiple decision trees, thereby 

reducing overfitting, and generating the mode of the classes (classification) or the mean 

prediction (regression) of the individual trees during training. 

3.5.5 XGBoost 
XGBoost, or eXtreme Gradient Boosting [33], is a distributed gradient boosting library 

extensively optimized to be highly efficient, flexible, and portable. It employs machine learning 

algorithms within the Gradient Boosting framework, emphasizing performance and efficiency. 

It comprises a variety of sophisticated capabilities, including sparsity awareness, 

regularization, and a weighted quantile sketch, which are designed to manage sparse data. 
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Algorithm 1 Hybrid Parrot-PSO Optimizer (POPSO) 

Require: Objective function fobj, lower bounds lb, upper bounds ub, dimensions dim, 

number of particles N , maximum iterations Max iter, max iteration without improvement max 

no improvement, maximum runtime max time  

Ensure: Best position Best pos, Best score Best score, Convergence curve 

curve 

1: Initialize population X, velocities V , personal bests PBest, and global best 

GBestX 

2: Evaluate initial fitness fitness 

3: Initialize curve, no improve count, and record start time 

4: for i = 1 to Max iter do 

5: if no improve count ≥ max no improve or (current time  − 

start time) > max time then 

6: break 

7: end if 

8: Update α = 2 × (1 −  i  ) 

9: Copy X to X new 

10: for each particle j do 

11: Select a random strategy St from {1, 2, 3, 4} 

12: if St == 1 then 

13: Apply Eq(5) 

14: else if St == 2 then 

15: Apply Eq(6) 

16: else if St == 3 then 

17: Apply Eq(7) 

18: else 

19: Apply Eq(8) 

20: end if 

21: Update velocity V [j] using PSO equations 

22: X new[j] = X[j] + V [j] 

23: end for 

24: Evaluate new fitness fitness new 

25: Perform local search using Simulated Annealing on the best individual 

26: Update personal bests PBest and global best GBestX 

27: Update X and fitness with new values 

28: Store best fitness in curve[i] 

29: if curve[i] == curve[i − 1] then 

30: no improve count+ = 1 

31: else 

32: no improve count = 0 

33: end if 

34: end for 

35: return Best pos = GBestX, Best score = GBestF , curve 
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Figure 1: POPSO Flowchart 

4. METHODS 

4.1 Approach 

Figure 2 illustrates the primary phases of the proposed approach implemented in this 

investigation. This methodology includes three phases. During the initial phase, four bio-

inspired algorithms were implemented to identify the most advantageous attributes. During 

the second phase, four machine learning classifiers were implemented for training. The 

performance metrics were ultimately employed to validate the algorithms. 

 
Figure 2: Proposed approach 
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This research employed the TUNADROMD [34] dataset, an exhaustive collection for 

classifying applications as goodware or malware. It is significant for cybersecurity and machine 

learning research due to its 4465 instances and 242 attributes. This dataset has two primary 

categories of features: API-based and permission-based. Two hundred fourteen permission-

based features provide a comprehensive overview of the different permissions that an 

application may request, including access to the network state, camera, and precise location. 

These capabilities facilitate the identification of potential permission abuse by malevolent 

applications. Furthermore, the dataset comprises 27 API-based features. These attributes are 

derived from the application’s utilization of particular API calls, which can indicate its intent 

and behavior. Malware may employ specific API calls more frequently to facilitate activities 

such as communicating with external servers or accessing sensitive information. In this dataset, 

the target attribute is a binary category that differentiates between malware and goodware. 

This renders the TUNADROMD dataset advantageous for developing and testing models 

designed to identify and mitigate malicious software. 

4.2.1 Features selection 

An abundant increase in Android malware data involves the incorporation of various 

attributes and features. Most attributes do not contribute to the results of predictive 

applications, leading to increased computation time and resources. 

Hence, the selection of a subset of features is required to achieve high accuracy rates. In 

this research Grey Wolf Optimizer (GWO), and Parrot Optimization Algorithm (POA) were 

implemented on the Android Malware Dataset to select the best subset of features. Features in 

the dataset were reduced by applying a fitness function designed for a decision tree classifier, 

which aims to maximize the accuracy of the model. The fitness function evaluates each subset 

of features by training a decision tree classifier on the training set (70% of the data) and 

calculating the accuracy on the test set (30% of the data). The fitness score is computed as 1 - 

accuracy, where accuracy is the proportion of correct predictions made by the classifier. 

Mathematically, the fitness function can be expressed as: 

Fitness(𝑆) = 1 −
1

𝑁test 
 𝑖=1𝛿(𝑦�̇�𝑦�̂�)   (12) 

 

where 𝑆 is the subset of selected features, 𝑁test  is the number of test samples, 𝑦𝑖 is the true 

label of the 𝑖-th test sample, �̂�𝑖 is the predicted label of the 𝑖-th test sample, and 𝛿(𝑦𝑖 , 𝑦∧ 𝑖) is the 

Kronecker delta function, which is 1 if 𝑦𝑖 = 𝑦∧ 𝑖  and 0 otherwise. For the Android malware 

dataset, PSO, GWO, and PO Proposed were applied to the training set. 

4.2.2 Classification 

The subsequent stage initiates the classification process, which involves training the 

features using diverse classifiers. We have effectively identified the most appropriate features 

in the Android malware dataset and purified all potentially chaotic data due to the feature 

selection process in the previous phase. This is the reason for this. We conducted experiments 

with a diverse array of parameters in GWO, PSO, and PO Proposed, including the number of 

iterations (the replication of a process to produce an outcome) and population size (the arbitrary 

construction of populations to determine the optimal population size based on the problem). 
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In order to ascertain the optimal configuration for feature selection and classification, we 

implemented experiments with populations of 30 and 60 and iterations of 5, 15, and 30. 

4.2.3 Evaluation 

Four performance metrics were employed to assess the PO, DE, and GWO algorithms: 

precision, recall, F-score, and accuracy. Accuracy is a statistical bias metric that quantifies the 

percentage of a test’s success rate. Low accuracy values suggest a discrepancy between the 

actual and result sets. Table 1 illustrates the confusion matrix for classification, which 

represents the classification of the potential outcome of recommending an item to a user. 

Accuracy employs four test measures. 

The Accuracy metric quantifies the frequency with which the model’s predictions are 

accurate in every class. The metric is determined through division 
Table 1: Confusion matrix for classification. 

 Recommended Not Recommended 

Preferred True Positive (TP) False Negative (FN) 

Not Preferred False Positive (FP) True Negative (TN) 

of the sum of the accurate predictions (including True Positives and True Negatives) by 

the overall count of predictions generated [35]. 

 

Accuracy =
 True Positives +  True Negatives 

 Total Predictions 
   (13) 

 

4.2.4 The F-score 

The F-score [36], a solitary digit, concisely evaluates a system or model's ability to 

generate precise optimistic predictions and identify every positive instance. The algorithm 

integrates two fundamental metrics, namely recall (the capacity to identify all positive cases) 

and precision (the accuracy of optimistic predictions). By achieving an equilibrium between 

these two variables, the F1 score offers a unified metric for evaluating performance. Elevated 

values on a scale of 0 to 1 indicate superior performance. It serves as a practical instrument for 

assessing the efficacy of classification systems. Defined by this formula is the F-score: 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ⋅
 Precision × Recall 

 Precision + Recall
   (14) 

 

4.2.5 Precision 

Indicates the proportion of positive cases predicted by the model that turned out to be 

true [37]. It quantifies the precision with which the model generates affirmative predictions. 

The formula for precision is: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   (15) 
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4.2.6 Recall 

As with sensitivity, recall [38]  quantifies the accuracy with which the model detects true 

positives. It provides the number of accurate optimistic predictions the model makes relative 

to the total number of positive cases. The formula for recall is: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   (16) 

 

5. RESULTS 

The Android Malware Dataset was employed to evaluate the GWO, PSO, and PO 

Proposed algorithms. In this context, these metaheuristic algorithms have not been extensively 

compared for feature selection, to the best of our knowledge. Five classifiers were employed to 

evaluate the feature selection algorithms: Decision Tree (DT), Gradient Boosting, 

HistGradientBoosting, Random Forest (RF), and XGBoost. In order to guarantee the 

impartiality of the outcomes, the algorithms were trained with identical methodologies. The 

scikit learn library in Python, which includes built in libraries for feature selection algorithms, 

had the classifiers available. The parameters’ values were determined through experimentation 

and are contingent upon the unique characteristics of each algorithm. For Android malware, 

GWO, PSO, and PO Proposed were used, and the classifiers employed were Decision Tree, 

Gradient Boosting, HistGradientBoosting, Random Forest, and XGBoost. 

The tables below summarize the performance metrics of different classifiers using PO 

PSO, including Decision Tree, Gradient Boosting, HistGradientBoosting, Random Forest, and 

XGBoost, evaluated over iterations of 5, 15, and 30. The metrics presented include Accuracy, 

Precision, Recall, and F1 Score, all rounded to two decimal places. Table 2 provides the metrics 

for a dataset containing a population of 30 instances, while Table 3 presents the metrics for a 

population of 60 instances. 

 
Table 2: Performance of Different Classifiers with Various Iterations on 30 Population using POPSO 

Classifier Iterations Accuracy Precision Recall F1 Score 

 5 0.99 0.99 0.66 0.66 

Decision Tree 15 0.99 0.99 0.66 0.66 

 30 0.99 0.99 0.66 0.66 

 5 0.98 0.97 0.65 0.64 

Gradient Boosting 15 0.98 0.97 0.65 0.64 

 30 0.98 0.97 0.65 0.64 

 5 0.99 0.99 0.66 0.66 

HistGradientBoosting 15 0.99 0.99 0.66 0.66 

 30 0.99 0.99 0.66 0.66 

 5 0.99 0.99 0.66 0.66 

Random Forest 15 0.99 0.99 0.66 0.66 

 30 0.99 0.99 0.66 0.66 

 5 0.99 0.99 0.65 0.65 

XGBoost 15 0.99 0.99 0.66 0.65 

 30 0.99 0.99 0.66 0.66 
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Table 3: Performance of Different Classifiers with Various Iterations on 60 Population using POPSO 

Classifier Iterations Accuracy Precision Recall F1 Score 

 5 0.99 0.99 0.66 0.66 

Decision Tree 15 0.99 0.99 0.66 0.66 

 30 0.99 0.99 0.66 0.66 

 5 0.98 0.97 0.65 0.64 

Gradient Boosting 15 0.98 0.97 0.65 0.64 

 30 0.98 0.97 0.65 0.64 

 5 0.99 0.99 0.66 0.66 

HistGradientBoosting 15 0.99 0.99 0.66 0.66 

 30 0.99 0.99 0.66 0.66 

 5 0.99 0.99 0.66 0.66 

Random Forest 15 0.99 0.99 0.66 0.66 

 30 0.99 0.99 0.66 0.66 

 5 0.99 0.99 0.65 0.65 

XGBoost 15 0.99 0.99 0.66 0.65 

 30 0.99 0.99 0.66 0.66 

 

The table below summarizes the performance metrics of different classifiers using GWO, 

including Decision Tree, Gradient Boosting, HistGradientBoosting, Random Forest, and 

XGBoost, evaluated over iterations of 5, 15, and 30. The metrics presented include Accuracy, 

Precision, Recall, and F1 Score, all rounded to two decimal places. The dataset used for these 

evaluations contains a population of 30 instances. 

 
Table 4: Performance of Different Classifiers with Various Iterations on Population of 30 Instances using GWO 

Classifier Iterations Accuracy Precision Recall F1  

Score Population of 30 Instances 

 5 0.94 0.95 0.63 0.63 

Decision Tree 15 0.94 0.95 0.63 0.63 

 30 0.94 0.95 0.63 0.63 

 5 0.93 0.93 0.62 0.62 

Gradient Boosting 15 0.93 0.93 0.62 0.62 

 30 0.93 0.93 0.62 0.62 

 5 0.94 0.95 0.63 0.63 

HistGradientBoosting 15 0.94 0.95 0.63 0.63 

 30 0.94 0.95 0.63 0.63 

 5 0.94 0.95 0.63 0.63 

Random Forest 15 0.94 0.95 0.63 0.63 

 30 0.94 0.95 0.63 0.63 

 5 0.94 0.95 0.63 0.63 

XGBoost 15 0.94 0.95 0.63 0.63 

 30 0.94 0.95 0.63 0.63 

 

The table below summarizes the performance metrics of different classifiers using GWO, 

including Decision Tree, Gradient Boosting, HistGradientBoosting, Random Forest, and 

XGBoost, evaluated over iterations of 5, 15, and 30. The metrics presented include Accuracy, 
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Precision, Recall, and F1 Score, all rounded to two decimal places. The dataset used for these 

evaluations contains a population of 60 instances. 
Table 5: Performance of Different Classifiers with Various Iterations on Population of 60 Instances using GWO 

Classifier Iterations Accuracy Precision Recall F1  

Score Population of 30 Instances 

 5 0.94 0.95 0.63 0.63 

Decision Tree 15 0.94 0.95 0.63 0.63 

 30 0.94 0.95 0.63 0.63 

 5 0.93 0.93 0.62 0.62 

Gradient Boosting 15 0.93 0.93 0.62 0.62 

 30 0.93 0.93 0.62 0.62 

 5 0.94 0.95 0.63 0.63 

HistGradientBoosting 15 0.94 0.95 0.63 0.63 

 30 0.94 0.95 0.63 0.63 

 5 0.94 0.95 0.63 0.63 

Random Forest 15 0.94 0.95 0.63 0.63 

 30 0.94 0.95 0.63 0.63 

 5 0.94 0.95 0.63 0.63 

XGBoost 15 0.94 0.95 0.63 0.63 

 30 0.94 0.95 0.63 0.63 

 

The bar chart in Figure 3 illustrates the accuracy of various classifiers under two 

optimization methods: PO PSO and GWO. The classifiers included are Decision Tree (DT), 

Gradient Boosting (GB), HistGradientBoosting (HGB), Random Forest (RF), and XGBoost (XG). 

On the left side of the chart, the accuracy of classifiers optimized using PO PSO is shown. These 

classifiers display higher accuracy values, generally ranging from approximately 0.96 to 0.99. 

On the right side, the accuracy of classifiers optimized using GWO is depicted, with lower 

accuracy values ranging from about 0.89 to 0.94. The chart effectively highlights the difference 

in performance between the two optimization methods, with PO PSO consistently yielding 

higher accuracy across all classifiers compared to GWO. 

 

The bar chart in Figure 4 illustrates the accuracy of various classifiers under two 

optimization methods: PO PSO and GWO. The classifiers included are Decision Tree (DT), 

Gradient Boosting (GB), HistGradientBoosting (HGB), Random Forest (RF), and XGBoost (XG). 

On the left side of the chart, the accuracy of classifiers optimized using PO PSO is shown. These 

classifiers display higher accuracy values, generally ranging from approximately 0.96 to 0.99. 

On the right side, the accuracy of classifiers optimized using GWO is depicted, with lower 

accuracy values ranging from about 0.89 to 0.94. The chart effectively highlights the difference 

in performance between the two optimization methods, with PO PSO consistently yielding 

higher accuracy across all classifiers compared to GWO. 
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Figure 3: Accuracy performance for GWO and PO PSO 30 population 

 

 
Figure 4: Accuracy performance for GWO and PO PSO 60 population 

6. CONCLUSION 

This research demonstrates the significant potential of bio-inspired Algorithms for 

optimizing the detection and classification of Android malware. We have demonstrated that 

the Parrot Optimizer (PO) and its hybrid combination with Particle Swarm Optimization 

(POPSO) can significantly enhance the efficacy of feature selection and the overall accuracy of 

detection by introducing and evaluating these methods. The PO PSO algorithm consistently 

outperforms conventional methods, including the Grey Wolf Optimizer (GWO), as evidenced 

by extensive experiments that compared various classifiers, including Decision Tree, Gradient 

Boosting, HistGradientBoosting, Random Forest, and XGBoost. The PO PSO approach 

substantially enhanced critical performance metrics, such as precision, recall, accuracy, and F1 

score. In particular, it resulted in an average improvement in accuracy of 5-10%, with some 

classifiers achieving up to 99% accuracy. These results emphasize the significance of employing 

exhaustive feature selection, robust machine learning models, and large datasets in developing 

effective malware detection systems. 
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In summary, the hybrid PO PSO algorithm is a potent instrument for addressing intricate 

optimization issues in malware detection, providing improved detection capabilities, and 

facilitating the development of cybersecurity measures. In order to offer even more effective 

protection against evolving cyber threats, future research could investigate the application of 

the PO PSO algorithm to other types of malwares, further enhancements, and integration with 

real time detection systems. 
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