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ABSTRACT — Acetylcholinesterase (AChE) is a crucial enzyme in neurotransmission and a key target in drug 
discovery, particularly for neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Identifying 
potent AChE inhibitors requires efficient screening methods due to the high cost and time-consuming nature 
of experimental approaches. Machine learning (ML) offers a powerful alternative for virtual screening, 
enabling rapid and accurate bioactivity predictions. In this study, we leveraged the PyCaret framework to 
develop ML models for predicting AChE inhibitory activity. A dataset of 7,717 compounds and 882 molecular 
descriptors from the ChEMBL database was used to train classification models, including Light Gradient 
Boosting Machine (LightGBM), XGBoost, Decision Tree, Extra Trees, and K-Nearest Neighbors (KNN). 
Performance was evaluated using accuracy, recall, precision, F1-score, and kappa metrics. The results indicate 
that LightGBM achieved the highest accuracy of 94.30% and an F1-score of 94.29%, followed by XGBoost with 
94.02% accuracy and an F1-score of 94.01%, demonstrating their superior predictive capabilities. Additionally, 
we analyzed computational efficiency, highlighting trade-offs between performance and model complexity. 
This study establishes ML as a scalable and effective approach for bioactivity prediction, reducing reliance on 
costly experimental screening. Our findings contribute to AI-driven drug discovery by providing an 
optimized workflow for identifying potential AChE inhibitors. 
    
Keywords— Machine Learning; Virtual Screening; Acetylcholinesterase Inhibitors; Drug Discovery; 
Cheminformatics 

 

1. INTRODUCTION 

Acetylcholinesterase (AChE) is a key enzyme involved in the hydrolysis of acetylcholine 

(ACh), a critical neurotransmitter in both the central and peripheral nervous systems. It plays 

an essential role in synaptic transmission by rapidly breaking down ACh, thereby preventing 

overstimulation of cholinergic receptors [1]. AChE is a major therapeutic target, with inhibitors 

widely used in the treatment of neurological disorders such as Alzheimer’s disease, Parkinson’s 

disease, and myasthenia gravis [2]. Additionally, AChE inhibitors are used in agriculture as 

pesticides and insecticides, and some organophosphate-based inhibitors have been 

weaponized as nerve agents [3]. 

Despite their therapeutic and industrial significance, AChE inhibitors pose substantial 

risks to human health and environmental safety. Pesticides such as carbamates and 

organophosphates have been linked to acute neurotoxicity in nontarget organisms, including 

mammals, birds, and aquatic species, due to their irreversible inhibition of AChE [4]. Given the 

high cost and ethical concerns of in vivo testing, computational approaches have been 
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increasingly employed to predict the bioactivity of chemical compounds against AChE, 

facilitating safer drug and pesticide design [5]. 

Machine learning (ML) has emerged as a powerful tool for predictive toxicology and drug 

discovery, offering an efficient alternative to traditional experimental screening methods. ML 

models, particularly supervised learning approaches, can learn complex relationships between 

molecular structures and biological activity by training on large scale datasets [18]. Unlike 

traditional computational techniques such as molecular docking and quantitative structure 

activity relationship (QSAR) modeling, ML-based methods can leverage large chemical 

libraries to improve predictive performance [16]. Recent studies have demonstrated the 

effectiveness of ML algorithms, including gradient boosting machines, deep learning, and 

support vector machines, in bioactivity prediction tasks [8]. 

In this study, we utilized the PyCaret framework to develop machine learning models for 

predicting AChE inhibitory activity [9]. The dataset comprised 7,717 compounds and 882 

molecular descriptors, which were used to train and evaluate a range of classification models, 

including Light Gradient Boosting Machine (LightGBM) [22], XGBoost [11], Decision Tree, 

Extra Trees, and K- Nearest Neighbors (KNN). These models were assessed using multiple 

performance metrics, including accuracy, recall, precision, F1-score, and kappa, to determine 

their effectiveness in bioactivity prediction. 

Our findings indicate that tree based ensemble methods, particularly Light- GBM and 

XGBoost, achieved the highest accuracy and AUC scores, demonstrating their strong predictive 

capabilities [12, 13]. These models outperform traditional approaches in both efficiency and 

generalization ability, making them valuable tools for virtual screening in drug discovery and 

toxicology assessment [14, 15]. Moreover, we analyzed model training time to assess 

computational efficiency, providing insights into the trade-offs between model complexity and 

predictive performance [15]. 

1.1 Contributions 

This study presents a novel application of machine learning models for predicting the 

bioactivity of compounds against Acetylcholinesterase (AChE), contributing to both 

computational drug discovery and toxicology assessment. The key contributions of this work 

are as follows: 

• Developed and evaluated machine learning models, including LightGBM, XGBoost, 

Decision Trees, Extra Trees, and K-Nearest Neighbors (KNN), using the PyCaret 

framework for AChE inhibitory activity prediction. 

• Processed a dataset of 7,717 compounds with 882 molecular descriptors from the 

ChEMBL database, applying feature engineering and bioactivity labeling to improve 

predictive accuracy. 

• Demonstrated that tree-based ensemble models outperform traditional approaches in 

accuracy and generalization, highlighting their efficiency in handling high dimensional 

cheminformatics data. 

• Provided insights into computational tradeoffs between model complexity and 

predictive performance, contributing to AI-driven virtual screening for drug discovery. 

By presenting a comprehensive evaluation of machine learning techniques in AChE 

inhibitor prediction, this research contributes valuable insights to the fields of cheminformatics 
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and computational drug discovery, paving the way for more efficient and scalable AI-driven 

screening methods. 

2. RELATED WORK 

The application of machine learning (ML) in drug discovery, particularly for predicting 

bioactivity against Acetylcholinesterase (AChE), has been extensively studied in recent years. 

Traditional computational approaches, such as molecular docking and quantitative structure 

activity relationship (QSAR) modeling, have been widely used to assess AChE inhibition [16, 

17]. However, these methods rely heavily on predefined molecular features and assumptions, 

limiting their predictive power. In contrast, ML models can learn complex patterns directly 

from large datasets, enhancing predictive accuracy and generalizability [18]. 

Several studies have demonstrated the effectiveness of ML models for bioactivity 

prediction. Baskin et al. [19] highlighted the potential of deep learning architectures, showing 

that convolutional neural networks (CNNs) outperform traditional QSAR models in 

cheminformatics applications. Similarly, Ma et al. [20] developed deep learning-based QSAR 

models that achieved superior performance in virtual screening compared to conventional 

statistical methods. Gradient boosting techniques, particularly LightGBM and XGBoost, have 

gained significant attention due to their efficiency and high predictive performance in drug 

discovery. Chen and Guestrin [21] introduced XGBoost as a scalable and efficient boosting 

method, which has since been widely adopted in cheminformatics. Ke et al. [22] further 

improved gradient boosting with LightGBM, which demonstrated faster training times and 

better performance on high-dimensional molecular datasets. 

Recent research has applied ML models to AChE inhibitor prediction. For example, 

Zhang et al. [23] utilized ML algorithms, including random forests and gradient boosting, to 

identify novel AChE inhibitors. Their findings indicate that ensemble-based models 

outperform traditional ML approaches in terms of accuracy and robustness. Additionally, Ho 

et al. [24] applied learning to rank techniques with gradient boosting decision trees for virtual 

screening, demonstrating improved ranking of potential drug candidates. 

While tree-based models such as LightGBM and XGBoost have shown promising results, 

hybrid approaches integrating ML with molecular docking have also emerged. Sheridan et al. 

[25] proposed combining LightGBM with molecular docking simulations to enhance the 

reliability of bioactivity predictions. Such hybrid methods provide a more comprehensive 

screening process, leveraging both data-driven and structure-based techniques. 

In summary, the integration of ML models, particularly gradient boosting techniques, has 

significantly improved bioactivity prediction for AChE inhibitors, demonstrating the potential 

of AI-driven virtual screening in drug discovery. 

3. METHODS 

3.1 Dataset Collection 

The dataset used in this study was obtained from the ChEMBL database, a widely used 

bioactivity database that provides curated data on chemical compounds, their biological 

interactions, and pharmacological properties [26]. ChEMBL serves as a valuable resource for 



International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025                                                        XXX 

 

cheminformatics and computational drug discovery, offering high-quality experimental data 

from published literature and regulatory submissions. 

For this study, the dataset was specifically filtered to focus on the inhibition of 

Acetylcholinesterase (AChE) in Homo sapiens, ensuring that only relevant bioactivity data was 

included in the model training process. 

The following criteria were applied: 

• Target Name: Acetylcholinesterase (AChE) 

• Target ChEMBL ID: CHEMBL220 

• Organism: Homo sapiens 

• Bioactivity Measurement: Half-maximal inhibitory concentration (IC50) 

The retrieved dataset includes molecular structures, bioactivity data, and details of 

experimental conditions. The IC50 values, which represent the concentration required to inhibit 

50% of AChE activity, were used as a quantitative measure of compound potency. IC50 is 

widely adopted in drug discovery research as a standard metric for evaluating the inhibitory 

effects of small molecules on enzymatic activity [27]. 

To ensure data integrity, entries with missing or inconsistent values were removed, and 

molecular descriptors were computed to provide numerical representations of chemical 

structures. These molecular descriptors, extracted using cheminformatics tools such as PaDEL 

Descriptor, were essential for feature engineering in machine learning models [29]. 

3.2 Data Preprocessing 

To ensure data consistency and improve the reliability of machine learning mod- els, 

several pre-processing steps were applied to the dataset. 

3.3.1 Handling Missing Values 

Entries with missing or undefined bioactivity values (IC50) were removed from the 

dataset to ensure that all compounds included in the analysis had valid experimental 

measurements. 

3.3.1 Bioactivity Labeling 

The dataset contains bioactivity data in the form of IC50 values, which represents the 

concentration required to inhibit 50% of AChE activity. To facilitate classification tasks, 

compounds were categorized into three distinct bioactivity classes: 

• Active: Compounds with IC50 values ≤ 1000 nM. 

• Intermediate: Compounds with IC50 values between 1000 nM and 10,000 nM. 

• Inactive: Compounds with IC50 values > 10,000 nM. 

3.3 Molecular Descriptors and Data Exploration 

3.3.1 Molecular Descriptors Calculation 

To transform chemical structures into machine-readable formats, molecular de- scriptors 

were calculated using the PaDEL-Descriptor software.  PaDEL-Descriptor is an open-source 

tool that generates a comprehensive set of molecular descriptors, including both 1D, 2D, and 
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fingerprint-based features [29]. These descriptors encode important chemical and structural 

properties, which are essential for predicting bioactivity. 

In total, 882 molecular descriptors were generated for each compound, resulting in a final 

dataset containing 7717 compounds and 882 features. The extracted molecular descriptors 

include: 

• Physicochemical Descriptors: Molecular weight (MW), LogP, hydrogen bond donors 

(HBD), hydrogen bond acceptors (HBA), rotatable bonds (NRB). 

• 2D Descriptors: Topological polar surface area (TPSA), number of rings, atom 

connectivity indices. 

• Fingerprint Features: MACCS keys, PubChem fingerprints, and Morgan circular 

fingerprints. 

These molecular descriptors serve as predictive features for machine learning models, 

enabling the identification of patterns between molecular structures and their bioactivity. 

3.3.2 Drug-Likeness Filtering Using Lipinski’s Rule of Five 

Lipinski’s Rule of Five (Ro5) was applied to evaluate the drug likeness of the compounds. 

According to Lipinski’s rule, a compound is likely to exhibit good oral bioavailability if it meets 

the following criteria [30]: 

• Molecular weight ≤ 500 Da 

• LogP ≤ 5 

• Hydrogen bond donors ≤ 5 

• Hydrogen bond acceptors ≤ 10 

Compounds violating more than one of these rules were filtered out to ensure that the 

dataset contained molecules with favorable pharmacokinetic properties. The application of 

Lipinski’s rule enhances the relevance of the dataset for drug discovery and reduces the 

likelihood of selecting compounds with poor absorption or permeability characteristics. 

3.3.3 Data Exploration and Bioactivity Analysis 

To gain insight into the dataset distribution and bioactivity trends, exploratory data 

analysis (EDA) was performed. The following figures illustrate key aspects of the dataset: 

These visualizations provide valuable insights into the distribution of bioactivity classes, 

the relationship between pIC50 values and activity, and the influence of physicochemical 

properties on bioactivity. The trends observed reinforce the importance of molecular 

descriptors in predicting inhibitory potential and guiding drug discovery efforts. 

4. EXPERIMENTAL AND RESULT 

The machine learning models were implemented and executed using the Kaggle 

Notebook environment, which provides cloud-based computing resources for data analysis 

and model training. The experiments were conducted using a CPU-based runtime, ensuring 

reproducibility and accessibility for computational tasks. The dataset, consisting of 7717 

compounds and 882 molecular descriptors, was preprocessed and analyzed within the Kaggle 

environment. The PyCaret library was employed to automate model selection, training, and 

evaluation. PyCaret provides a streamlined approach to machine learning, allowing for 

efficient comparison of multiple models and hyperparameter tuning. To maintain consistency 



International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025                                                        XXX 

 

across runs, a fixed random seed was set in PyCaret, ensuring that model training and 

evaluation results were reproducible. The training and testing data were split using an 80:20 

ratio, with model performance evaluated using standard classification metrics such as 

accuracy, precision, recall, and F1- score. Additionally, to ensure robust model evaluation and 

minimize bias, a 10-fold cross validation approach was applied. This method involves splitting 

the dataset into ten equal subsets, where the model is trained on nine folds and tested on the 

remaining fold in each iteration, leading to a more generalized performance assessment.  Given 

the computational limitations of a CPU-based environment, feature selection techniques were 

applied to reduce the dimensionality of the dataset, improving training efficiency while 

maintaining predictive performance. The final selected model was deployed within the Kaggle 

Notebook for validation and further analysis. 

 

 

Figure 1: Distribution of bioactivity classes. The dataset contains a higher proportion of active compounds 
compared to inactive ones. 

5. RESULTS 

5.1 Machine Learning Model Performance 

To predict the bioactivity of compounds against Acetylcholinesterase (AChE), machine 

learning models were implemented using the PyCaret framework. The dataset, containing 7717 

compounds and 882 molecular descriptors, was used to train various classification models. 

PyCaret’s model comparison function was used to evaluate multiple machine learning 

algorithms based on classification performance metrics, including accuracy, AUC, recall, 

precision, F1-score, kappa, and training time.  
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Figure 2: Box plot of pIC50 values for active and inactive compounds. Active compounds generally exhibit 

higher pIC50 values, indicating greater inhibitory potential. 

The top performing models are presented in Table 1. 
Table 1: Performance comparison of the top five machine learning models based on accuracy, recall, precision, 

F1-score, and kappa 

Model Accuracy Recall Precision F1-score Kappa 

LightGBM 0.9430 0.9430 0.9432 0.9429 0.9098 

XGBoost 0.9402 0.9402 0.9404 0.9401 0.9054 

Decision Tree 0.9083 0.9083 0.9085 0.9083 0.8550 

Extra Trees 0.7431 0.7431 0.7410 0.7411 0.5919 

K-Nearest Neighbors 0.6885 0.6885 0.6807 0.6781 0.4917 

Among the evaluated models, Light Gradient Boosting Machine (Light- GBM) achieved 

the highest performance with an accuracy of 94.30% and an AUC of 0.9784, followed closely by 

XGBoost with an accuracy of 94.02% and an AUC of 0.9766. The Decision Tree model also 

showed good performance with an accuracy of 90.83% but required significantly less 

computational time compared to ensemble-based models. 

The Extra Trees and K-Nearest Neighbors models demonstrated lower performance in 

terms of accuracy and AUC, indicating that more complex models such as LightGBM and 

XGBoost are better suited for bioactivity prediction in this dataset. Training time varied across 

models, with Decision Trees and KNN being the fastest, while ensemble methods required 

more computational resources. 
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Figure 3: Scatter plot showing the relationship between molecular weight (MW) and LogP for active and inactive 

compounds. The plot suggests a trend where molecular weight and LogP influence bioactivity. 

These results suggest that tree-based ensemble models, particularly LightGBM and 

XGBoost, are highly effective in predicting AChE inhibitory activity and could serve as reliable 

tools for virtual screening in drug discovery. 

6. DISCUSSION 

The results of our machine learning experiments indicate that tree-based ensemble 

models, particularly LightGBM and XGBoost, exhibit superior predictive performance in 

classifying compounds based on their bioactivity against Acetyl- cholinesterase (AChE). These 

models achieved the highest accuracy scores, with LightGBM at 94.30% and XGBoost at 94.02%, 

demonstrating their robustness in handling high-dimensional molecular descriptor data. The 

superior performance of LightGBM and XGBoost can be attributed to their ability to efficiently 

handle large feature spaces and capture complex relationships between molecular structures 

and bioactivity. These models leverage gradient boosting techniques, which iteratively improve 

predictions by minimizing errors from previous iterations. Additionally, they are known for 

their capability to handle imbalanced datasets, a common challenge in bioactivity prediction. 

In contrast, 
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Figure 4: AUC Score of Top 5 ML Models. LightGBM and XGBoost achieved the highest AUC scores, indicating 

their strong predictive performance. 

 

Simple models like Decision Trees and K-Nearest Neighbors (KNN) exhibited lower 

predictive performance. The Decision Tree model, despite achieving an accuracy of 90.83%, 

showed a lower generalization capability compared to ensemble methods. Extra Trees and 

KNN performed the weakest among the selected models, with KNN achieving an accuracy of 

only 68.85%. The performance of KNN is likely hindered by its sensitivity to high-dimensional 

feature spaces and the curse of dimensionality, leading to suboptimal classification results. The 

computational efficiency of the models varied significantly. While Decision Trees and KNN 

exhibited the fastest training times, LightGBM and XGBoost required substantially more 

computational resources. This is expected, given the iterative nature of gradient boosting 

algorithms, which require multiple rounds of optimization to fine-tune their decision 

boundaries. The increased training time for these models, however, is justified by their superior 

accuracy and generalization ability. The findings highlight the importance of selecting an 

appropriate machine learning model for bioactivity prediction. Ensemble-based models like 

LightGBM and XGBoost provide the best trade-off between accuracy and computational cost, 

making them suitable for real world virtual screening applications. However, the choice of 

model should also consider deployment constraints, such as available computational power 

and real-time inference requirements. 

7. CONCLUSION 

This study explored the application of machine learning models for predicting 

Acetylcholinesterase (AChE) inhibitory activity, aiming to enhance virtual screening methods 

in drug discovery. Using a dataset of 7,717 compounds with 
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Figure 5: Training Time of Top 5 ML Models. LightGBM and XGBoost had longer training times compared to 

Decision Trees and KNN, reflecting the com- plexity of their learning process. 

 

882 molecular descriptors, we implemented and evaluated multiple ML models through 

the PyCaret framework. Our results demonstrate that gradient boosting techniques, 

particularly LightGBM and XGBoost, outperform traditional models in accuracy, recall, and 

precision. These models efficiently handle high-dimensional cheminformatics data, making 

them well-suited for bioactivity prediction tasks. While ensemble models require longer 

training times, their superior performance justifies their use in virtual screening applications.  

This study underscores the importance of AI-driven approaches in cheminformatics, providing 

an efficient alternative to traditional computational screening methods. The integration of ML 

in bioactivity prediction accelerates drug discovery by reducing experimental costs and 

optimizing candidate selection.  Future research should focus on improving model 

interpretability, integrating molecular docking simulations, and incorporating deep learning 

techniques such as Graph Neural Networks (GNNs) to further enhance predictive accuracy and 

generalization capabilities. By leveraging AI-based methodologies, this research contributes to 

the advancement of data-driven drug discovery and cheminformatics. 
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