
IJAIA

Volume 1 | Number 1 | June 2025 | Pages XXX-XXX

* Corresponding author DOI: https://doi.org/

International Journal of Artificial Intelligence Applications

ISSN (online): 0000-0000

Homepage: ijaia.com

Modelling and Simulating Data Centers in Cloud Computing

using GreenCloud Simulator

Eslam Alsubehat1, Shoroq Al-Sharari2

1Department of Computer Science, Al Hussein Bin Talal University, Ma'an, Jordan
E-mail: Islam.A.Subaihat@ahu.edu.jo

2 Department of Software Engineering, Al Hussein Bin Talal University , Ma'an, Jordan

E-mail: shoroq.al-sharari@ahu.edu.jo.

Received: 01, 2025 Revised: 02, 2025 Accepted: 03, 2025 Available online: 06, 2025

Abstract— Cloud computing is an important source of computing worldwide because it can serve customers
as needed and without additional costs. Moreover, it serves the customer at the lowest cost and fastest time
by providing computing sources in various forms. Aside from providing millions of users the means to use
offered services through their own computers, terminals, and mobile devices, studying cloud computing on
real cloud systems is difficult at times. Thus, researchers used a specialized program called cloud simulator
to study cloud computing, which in turn studies cloud computing from different perspectives, such as energy
consumption, cloud services, and resource management. In this paper, we used Green Cloud simulator to
model and simulate cloud data centers (DCs). Through this simulator, we presented an experimental
comparative study among common task scheduling algorithms in cloud computing (i.e., green, power-saver,
random, and round-robin schedulers). These algorithms are discussed and analyzed briefly. The metrics used
to evaluate the task scheduling algorithms include (1) server loads, (2) DC loads, and (3) number of servers
used.
Keywords—Cloud computing, Data Center, Simulation, scheduling.

1. INTRODUCTION

Organizations are currently focused on attaining an enduring information and

communications technology technique for their business processes. The major motivation for

such intent is to reduce their carbon impact and environmental influences, as well as their

operational costs. In this context, cloud computing offers a useful means to achieve these goals.

Cloud computing is a promising technology that is becoming increasingly prevalent because it

facilitates access to computing resources, such as programs, storages, expert services, video

games, films, and music, whenever necessary. These resources are provided such that cloud

clients do not need to be aware of how or from where they are obtaining these materials.

Instead, clients only need to be concerned with acquiring broadband connectivity to the cloud.

Data centers (DCs) possess powerful computing and storage capabilities. Important

domains, such as particle physics, scientific computing and simulation, Earth observation, and

oil prospecting, are supported by DCs. Numerous densely packed blade servers are utilized by

DCs to maximize management efficiency and space utilization. The energy consumed by DCs

remarkably increases with the quantity and scale of servers, that is, the amount of such energy

is directly related to the number of hosted servers and their respective workloads [1].

https://doi.org/
mailto:Islam.A.Subaihat@ahu.edu.jo
mailto:shoroq.al-sharari@ahu.edu.jo.

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

Considering the increased development of cloud computing and the amount of energy

consumed by it, many researchers seek to find solutions that will reduce the amount of energy

consumed by cloud computing infrastructure. However, the complexity of a cloud computing

environment is an obstacle faced by numerous researchers when conducting studies on a real

cloud computing infrastructure. Cloud simulation software is used to overcome this obstacle.

This study aims to evaluate and compare common task scheduling algorithms (i.e., green,

power-saver, random, and round-robin schedulers) used in cloud system [2].

2. CLOUD COMPUTING

Many experts have defined cloud computing from different aspects. The most common

definitions of cloud computing are listed as follows:

• [3] ”Clouds are a large pool of easily usable and accessible virtualized resources (such

as hardware, development platforms and/or services). These resources can be

dynamically re-configured to adjust to a variable load (scale), allowing also for optimum

resource utilization. This pool of resources is typically exploited by a pay-per-use mode

which guarantees are offered by the Infrastructure Provider by means of customized

SLA”.

• [4] “Cloud Computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction”.

• [5] “Cloud is a parallel and distributed computing system consisting of a collection of

inter-connected and virtualized computers that are dynamically provisioned and

presented as one or more unified computing resources based on service-level

agreements (SLA) established through negotiation between the service provider and

consumers.”

The definitions presented by [3][4][5] are explanations that are most relevant to this

research. Hence, cloud computing can possibly be depicted as a set of DCs that connect to the

Internet to offer their services. These DCs are based on the virtualization of their infrastructure

such that they have virtual machines (VMs) as basic units of computation. In general, they offer

hardware (i.e., VM for computations) or software services. These services are provided by

mutual agreement through a SLA contract and charged on the basis of a per-use pricing

method. Based on the above dentitions, imagining the need for a scheduling algorithm that

attempts to find suitable physical machines that can meet the client’s requirements in the DC

becomes possible. The DC needs to have enough resources, such as bandwidth (BW), which is

important in handling user’s tasks. Considering that cloud computing is a business model, the

SLA agreement should be considered. Now, forming the job’s life cycle by using three steps

starting from the signing of the SLA contract, then finding the best cloud provider, and ending

with managing the resources inside the cloud provider becomes possible. This work has built

its framework and drawn its assumptions based on the provided definitions.

Figure 1 depicts the general view of cloud computing. In this figure, several cloud service

providers offer various services through the Internet. Clients around the world are connected

and send their jobs to the cloud providers via the Internet. However, this variation and

multiplicity of services increase the size of search space for clients. Therefore, new methods are

needed to orchestrate the services to save clients’ time. To understand the architecture of these

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

services in more detail, the next section shows the components of cloud computing and their

relation to this work.

Figure 1 General View of Cloud Computing

2.1. Cloud Computing: Architecture and Provisioning

Cloud computing has emerged as a computing infrastructure that enables the rapid

delivery of computing resources as a utility in a dynamically scalable, virtualized manner. The

advantages of cloud computing over traditional computing include agility, low entry cost,

device independence, and scalability (Tsai et al., 2010).

Cloud models use the DC as a basic unit in their architecture [6][5]. These models can be

viewed as a collection of massively distributed DCs [7]. In other words, cloud models are a set

of cloud service providers located around the world that offer services via their DCs.

A DC [8], or server farm as it is sometimes called, is a massive, centralized repository for

data storage, computation, and management. It is a farm for hosting huge number of servers

or processing elements, clusters, and/or huge amounts of storage to serve customer requests.

These DCs are connected to the Internet and merge with other components to form the

cloud paradigm. The essential components that make up cloud computing are listed in the

following paragraphs [9][10][11](Foster et al., 2008; Riml et al., 2009; Oliveira et al., 2010):

2.1.1. Clients:

 A cloud client generally consists of computer software or hardware that relies on the

use of cloud computing for the delivery of applications or one that is designed specifically for

the delivery of cloud services. Examples include computers, phones and other devices,

operating systems, and browsers.

2.1.2. Services:

 Services refer to software systems that are designed to support interoperable machine-

to-machine interaction over a network that may be directly accessed by other cloud computing

components, software (e.g. software plus services), or end users.

2.1.3. Application:

 Cloud applications leverage the use of cloud computing in their software architecture,

which typically eliminates the underlying need to run the application on the user’s own

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

computer. This service alleviates the burden of software maintenance, ongoing operation, and

ongoing support. This kind of service is also called the software as a service.

2.1.4. Platform:

Cloud platforms, or platform as a service, deliver a computing platform that consumes

cloud infrastructure while supporting cloud applications. They facilitate the deployment of

many applications without the same complexity and cost of purchasing and managing

whatever underlying layers of hardware and software that would be required. Platforms in

cloud computing fall into a few different categories, namely, services, solution stacks, and

structured storage.

2.1.5. Storage:

Cloud storage refers to the delivery of data storage as a service (including database-like

services) and is often billed on a utility computing basis (e.g., per gigabyte per month).

2.1.6. Infrastructure:

Cloud computing infrastructure, or infrastructure as a service (IaaS), involves the

delivery of a computer infrastructure as a service that is typically a platform virtualization

environment.

Figure 2 summarizes the aforementioned cloud comportments in the shape of a stacked

layer. The scope of this work falls within the infrastructure layer, such that the cloud providers

offer VMs as computation units to clients with urgent tasks that need to be executed. The use

of IaaS to execute clients’ task is inspired by the cloud characteristics described in the next

section.

Figure 2 Cloud Computing Stack Layers

2.2. Cloud deployment model

Cloud computing is classified into three types [12] (Peng et. al, 2009):

2.2.1. Private Cloud

This classification offers hosted services within the organization. Firewall and security

procedures protect the hosted services from being accessed by unauthorized users.

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

2.2.2. Public Cloud

This classification offers hosted services that can be accessed by any organization or

individual.

2.2.3. Hybrid Cloud

This classification is a combination of the two aforementioned types, where private

cloud can be linked to one or more external cloud services.

3. SYSTEM MODEL

The system model is developed based on [13][14][15]. Figure 3 depicts this model, which

mainly consists of the cloud users, incoming tasks, VMs and server controllers, scheduling

algorithm controllers, and servers.

Figure 3 System Model

1. User represents the cloud user who will send tasks to the cloud computing DC.

2. Task refers to the task sent by cloud users to the cloud computing DC. Each task has the

following elements: size, maximum completion time, and ID number.

3. DC Main Queue holds the waiting tasks for a period of time < task deadline.

4. Scheduling Algorithm Controller determines the scheduling algorithm that will be used to

handle the incoming tasks (e.g., round-robin, green, random, and power-saver schedulers).

5. VM and server controller handle the received tasks after accepting the VM status and

decision from the scheduling algorithm controller.

6. Servers create necessary VM and execute the tasks of users.

7. Finished tasks send the completed tasks to users.

4. SIMULATION TOOL

The architecture and main features of the cloud computing simulator used in this study

are explained in this section. Social networking, content delivery, web hosting, and real-time

instrumented data processing are examples of traditional and emerging cloud-based

applications. These types of applications possess different compositions, configurations, and

deployment requirements. Quantifying the performance of scheduling and allocation policies

in real cloud environments under different conditions and various applications and service

models is extremely difficult due to the following reasons. First, users have heterogeneous and

conflicting quality of service requirements, and second, clouds have varying demands, supply

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

patterns, and system sizes. When real infrastructure, such as Amazon EC2, is adopted,

experiments are limited to the infrastructure scale. Thus, reproducing the results becomes

challenging. This situation arises because the conditions that prevail in an Internet-based

environment cannot be controlled by resource allocation developers and application

scheduling algorithms [16]. Therefore, we used the GreenCloud simulator, which can be

applied to develop novel solutions for the monitoring, resource allocation, workload

scheduling, and optimization of communication protocols and network infrastructure. The

GreenCloud simulator is an extension of the well-known NS2 network simulator and is

released under the General Public License Agreement [17].

4.1. Simulator Architecture

Figure 2 shows the structure of the GreenCloud simulator using a three-tier DC

architecture.

The main components of this simulator are listed as follows [17]:

1. Servers that form DC in the cloud are used to run tasks.

2. Switches and links constitute the network topology and the resulting connections by

providing different cabling solutions.

3. Workloads are considered objects that model various cloud user services, such as instant

messaging and social networks.

4.2. Simulator Implementation

In this experiment, GreenCloud was used to test, evaluate, and compare the adopted

and proposed algorithms. Implementation was realized by modifying the original source code

of the simulator. The original source code was written in C++ and the Tool Command

Language and was based on the NS2 network simulator. Eclipse Standard editor version 4.4

was used for the modification.

Figure 4 provides a general view of the simulation steps. The GreenCloud simulator is

set up and installed during the pre-simulation phase, and the simulator configurations are

read from the files. In the next step, the DC is created, and the cloud network is developed.

This step requires the simulation configuration settings that represent the network and the

servers’ specifications. Notably, each server may have its own specifications for forming a

heterogeneous paradigm. Subsequently, the simulator initiates an event for the arrival of each

task to the system. After triggering the events, the simulator begins to execute the scheduling

algorithm to map the tasks onto appropriate VMs. Then, the simulator begins monitoring the

execution of tasks and recording the ending time of execution and the consumed energy in

special tracing files. Simulation stops when all the tasks have passed through the GreenCloud

simulator, and then the post-simulation phase begins. This phase involves reading the tracing

files and sending the results to an Excel sheet for analysis.

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

Figure 4 Simulation Steps

The main configuration for the GreenCloud simulator used in this work is provided in

Table 1. The table lists the components of the proposed system and their specifications.
Table 1 GreenCloud Configuration

Parameters Value

DC type Three–tier topology

No. of core switches 2

No. of aggregation switches 4

No. of access switches 8

No. of servers 1,440

Access links 1 Gb

Aggregation links 1 Gb

Core links 10 Gb

DC load 0.1, 0.2, 0.3, …, 0.9, 1.0

Simulation time 60 min

Power management in server DVFS and DNS

Task size 8,500 bit

Task deadline 20 s

Task type High-performance computing

5. DC DESIGN MODEL

Some commonly adopted network architectures in DCs include multi-tier architectures

(i.e., two-tier (2T), three-tier (3T), and 3T high-speed (3Ths) architectures [18]). 3T is the most

popular architecture in large-scale DCs. In such architecture, the core layer connects the DC to

the Internet backbone, the aggregation layer provides diverse functions (e.g., content

switching, secure socket layer, and firewalls), and the access layer connects the internal data

servers that are arranged in a rack–blade assembly. Multiple links are present from one tier to

another. These links, along with multiple internal servers, ensure availability and fault

tolerance in the DC but at the cost of generating redundancy.

Server farms in current DCs include over 100,000 hosts, in which 70% of all

communication activities are performed internally [19]. The most frequently applied DC

architecture is the 3T architecture. The three layers of the DC architecture, namely, the core,

aggregation, and access networks, are presented in Figure 5 [20].

The 3T DC topology selected for the simulations includes 1,440 servers, which are set

into 16 racks (i.e., 90 servers per rack). The racks are linked using two cores, four aggregations,

and eight access switches. The network links that connect the aggregation switches to the core

have a data rate of 10 Gb/s. The links that connect the aggregation and access switches, along

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

with the access links that connect computing servers to the top-of-rack switches, have a data

rate of 1 Gb/s. The propagation delay of all the links is fixed at 3.3 µs. Table 1 summarizes the

simulation setup parameters [21].

6. SYSTEM PARAMETERS

The criterion for evaluating the virtualized environment is introduced in this section.

Two types of parameters are used: input and output. Input parameters configure the system,

whereas output parameters measure system performance.

6.1. Input Parameters

The following input parameters are fed to the simulator before it starts.

• Number of DCs: Given that we are focusing on a VM in DC and the consumed energy

in DC, only one DC is assumed to be present.

Figure 5 GreenCloud Simulator: A 3T Architecture [17]

• Number of VMs in DC and their specifications: The number of VMs in DC that are

dedicated to finishing all the submitted tasks and the specifications of these VMs.

• Number of tasks submitted and their specifications: A set of tasks is generated and

submitted to the DC, and each task has a deadline and size. The scheduler should handle

tasks according to their specifications.

• Scheduling algorithm: The manner in which tasks are mapped onto VMs affects the

simulation results. In each experiment, the algorithm that maps the tasks onto VMs is

presented as an input parameter. In this research, we adopt two task scheduling

algorithms, namely, the green scheduler algorithm and PSSA.

6.2. Output Parameters

Several performance metrics are used to test and evaluate the proposed models. These

parameters determine system efficiency according to the input parameters. The output

parameters are described as follows:

Core

Network

Aggregation

Network

Access

Network

Computing Server

1 RU Rack Switch

L3 Switch

Task
Task

Links

10 GE 1 GE

Workload
Generator

Cloud

User
Cloud

User

Data Center

Data Center
Characteristics

Task
Scheduler

TaskCom

Agent

L3 Energy
model

L2 Energy
model

Server
Characteristics

TaskCom

Sink

Connect ()

SchedulerServer
Energy model

S S S S S S S S S

Workload
Trace File

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

• Makespan: The maximum completion time of all the received tasks per unit time. This

parameter indicates the quality of job assignment to resources in terms of execution time.

This parameter can be written formally as Equation 1.

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥{𝐹𝑇𝑗|∀𝑗 ∈ 𝑙} , (1)

where 𝐹𝑇𝑗 denotes the completion time of task 𝑗 that belongs to task list 𝑙.

• Throughput: The number of executed tasks is calculated to study the efficiency of

meeting task deadlines. This parameter is calculated using Equation 2.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑙 = ∑ 𝑋𝑗𝑗∈𝑙 , (2)

where 𝑋𝑗 is

Figure 6 Detailed Components of Switch Energy Consumption

𝑋𝑗 = {
1, 𝑡𝑎𝑠𝑘 𝑗 ℎ𝑎𝑠 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Task failure: The number of task failures indicates the number of tasks that fail to meet

their deadlines, as shown in Equation 4.

𝐹 = ∑ 1 − 𝑋𝑗𝑗∈𝑙 , (4)

where 𝐹 is the number of is failed tasks; and 𝑋𝑗 is the decision variable that indicates the

task’s completion time, which is provided in Equation 3.

• DC and server loads: The DC load represents the percentage of computing resources

that are allocated for incoming tasks with respect to DC capacity. This load should be

between 0% and 100%. A load close to 0 indicates an idle DC, whereas a load equal to

100% denotes a saturated DC [17]. To calculate DC and server loads, let 𝑆 be the set of 𝑀

servers in DC, where 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑀}. Each server 𝑠𝑖 has nominal million instructions

per second (MIPS; N), which denotes the maximum computing capability of the server

at the maximum frequency. Server load 𝐶 corresponds to the current load of the server

in MIPS. Equation 5 indicates the load for each server si, which is equal to the ratio of

the current server load to the maximum computing capability.

𝑙𝑜𝑎𝑑 (𝑠𝑖) =
𝐶(𝑠𝑖)

𝑁(𝑠𝑖)
 (5)

• The DC load measured using Equation 6 is equal to the average load of all its hosts.

𝑙𝑜𝑎𝑑 (𝐷𝐶) =
∑

𝐶(𝑠𝑖)

𝑁(𝑠𝑖)∀𝑠∈𝑆

𝑀
 (6)

• DC energy consumption: The total energy consumption in DC represents the sum of the

energy consumed by the servers and switches [17]. In this research, we focus on the

energy of servers and network switches. Hence, the power consumption of an average

server can be expressed using Equation 7.

𝑃 = 𝑃𝑓𝑖𝑥𝑒𝑑 + 𝑃𝑓 . 𝑓3 , (7)

where 𝑃𝑓𝑖𝑥𝑒𝑑 accounts for the portion of the consumed power that does not scale with

the operating frequency 𝑓, and Pf is the frequency-dependent CPU power consumption.

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

The power consumption of a switch can be expressed using Equation 8.

𝑃𝑠𝑤𝑖𝑡𝑐ℎ = 𝑃𝑐ℎ𝑎𝑠𝑠𝑖𝑠 + 𝑛𝑙𝑖𝑛𝑒𝑐𝑎𝑟𝑑𝑠 + 𝑃𝑙𝑖𝑛𝑒𝑐𝑎𝑟𝑑 + ∑ 𝑛𝑝𝑜𝑟𝑡𝑠,𝑟 + 𝑃𝑟
𝑅
𝑖=0 (8)

Figure 6 shows the detailed components of switch energy consumption, where 𝑃𝑠𝑤𝑖𝑡𝑐ℎ is

the total power consumed for the switch, 𝑃𝑐ℎ𝑎𝑠𝑠𝑖𝑠 is the consumed power for the switch’s

chassis (hardware), 𝑛 is the number of line cards in the switch, 𝑃𝑙𝑖𝑛𝑒𝑐𝑎𝑟𝑑𝑠 is the power

consumed using any active switch line card, and 𝑃𝑟 is the power consumed by a port

(transceiver) that runs at bit rate 𝑟.

7. RESULTS

To demonstrate the impact of server virtualization on the server’s energy consumption,

two experiments were conducted to measure the following parameters: server’s energy

consumption, DC load, and makespan. That is, PSSA is used under the GreenCloud simulator

to compare two simulation scenarios (with and without server virtualization).

7.1. Makespan

Figure 7 represents the total time required to finish all tasks in minutes for each

scheduling algorithm, the experiment was carried out 10 times, each time with a different DC

load starting from 10% to 100%. The results reveled that random and round robin schedulers

showed the worst finishing time from 10% to 60%. Meanwhile, the green scheduler required

more time to finish all tasks at load 80%–100%. The power-saver scheduler showed the best

execution time among all schedulers at all simulation loads.

Figure 7 Simulation Time at Different Simulation Loads

7.2. DC Load

Figure 8 represents the DC load after implementing different simulation scenarios with

varying loads starting from 10% to 100%. The figure shows a continuous load difference

between the four scheduling algorithms. The power-saver scheduler shows an improvement

in load from 10% to 70%. Meanwhile, at 80% to 100%, the random scheduler showed

remarkable DC load.

0

5

10

15

20

25

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

T
im

e
in

 M
in

u
et

s

Simulation Load

Power Saver algorithm Green Algorithm

Round Robin Algorithm Random Agorithm

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

Figure 8 DC Load at Different Simulation Loads

7.3. DC energy consumption

Figure 9 represents the consumed energy of servers at different DC loads for the four

scheduling algorithms (i.e., our proposed scheduling algorithm, green scheduling, round

robin, and random algorithms). The experiment was carried out 10 times, each time with a

different DC load starting from 10% to 100%. When the DC load increases, the total energy

consumed by the servers increases for all four schedulers. However, the power-saver

scheduler demonstrated a better energy saving mechanism than other scheduling algorithms.

Here, a higher DC load implies greater energy consumption.

Figure 9Energy consumption at DC Loads

8. DISCUSSION

The green and power-saver schedulers perform better in terms of power saving, as

revealed in Figure 9. The reason behind this phenomenon is that the round robin and random

schedulers have used all 1440 servers to finish all DC tasks, whereas the green and power-

saver schedulers at 30% load have only used one-third of all 1440 servers to finish the DC tasks

and to keep the remaining servers in DNS mode.

0%

10%

20%

30%

40%

50%

60%

70%

80%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
D

C
 l

o
a

d

Simulatiom load

Green Scheduler Power Saver Scheduler

Round Robin scheduler Random Schdeuler

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
n

er
g

y
 c

o
n

su
m

ed
 b

y
 s

er
v

er
s

 w
*

h

DC Load

Green Scheduler Power Saver Scheduler

Round Robin scheduler Random Schdeuler

International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025 XXX

The results also showed that the power-saver scheduler performs better than the green

scheduler in terms of utilization. Hence, the total consumed energy using the power-saver

scheduler is less than that of the green scheduler (Figure 13). The reason is that the green

scheduler loops in all machines until it can schedule the task. Therefore, if all machines are

occupied and cannot schedule the task, then the task will be marked as failed. Meanwhile, the

power-saver scheduler tries to schedule on the powered-on machines until it is scheduled.

However, if all machines that are turned on are occupied, then the system will turn on another

machine and schedule the task in it. If no more machines can be turned on, then the system

will give another try, and if all the machines are still occupied, then the task is marked as failed.

9. CONCLUSIONS

In this study, we propose a new task scheduling algorithm called power-saver

scheduling algorithm based on DVFS and DNS. The proposed scheduling algorithm was

compared with the best existing energy-efficient scheduling algorithm (i.e., green scheduler),

round robin algorithm, and random algorithm. The comparison was conducted using

GreenCloud simulator with a focus on energy consumption, server load, DC load, and task

finishing time. The simulation results revealed that the proposed algorithm performed better

than all schedulers in all aspects (i.e., energy consumption, server load, DC load, and task

finishing time). The results also demonstrated that the proposed algorithm did not

compromise the DC performance, and all tasks were fully completed as they achieved the SLA.

According to these results, the scheduling algorithm based on DVFS and DNS can offer

enhanced performance in terms of power consumption and server load while maintaining the

SLA.

REFERENCES

[1] A. Beloglazov, R. Buyya, Y. C. Lee and A. Y. Zomaya, "A taxonomy and survey of energy-efficient

data centers and cloud computing systems," Advances in Computers, vol. 82, pp. 47-111, 2011. doi:

https://doi.org/10.1016/B978-0-12-385512-1.00003-7

[2] R. Buyya, R. Ranjan and R. N. Calheiros, "InterCloud: Utility-oriented federation of cloud computing

environments for scaling of application services," in Algorithms and Architectures for Parallel

Processing, Berlin: Springer, 2010, pp. 13-31. doi: https://doi.org/10.1007/978-3-642-13119-6_2

[3] L. M. Vaquero, L. Rodero-Merino, J. Caceres and M. Lindner, "A break in the clouds: towards a cloud

definition," ACM SIGCOMM Computer Communication Review, vol. 39, no. 1, pp. 50-55, 2009.

doi: https://doi.org/10.1145/1496091.1496100

[4] P. Mell and T. Grance, "The NIST Definition of Cloud Computing," NIST Special Publication 800-

145, Sep. 2011. doi: https://doi.org/10.6028/NIST.SP.800-145

[5] I. Foster, Y. Zhao, I. Raicu and S. Lu, "Cloud computing and grid computing 360-degree compared,"

in Proc. GCE'08, 2008, pp. 1-10. doi: https://doi.org/10.1109/GCE.2008.4738445

[6] M. Armbrust et al., "A view of cloud computing," Commun. ACM, vol. 53, no. 4, pp. 50-58, 2010. doi:

https://doi.org/10.1145/1721654.1721672

[7] K. Hwang, G. Fox and J. J. Dongarra, *Distributed and Cloud Computing: From Parallel Processing

to the Internet of Things*, 1st ed. Amsterdam, Netherlands: Morgan Kaufmann, 2012. [Online].

Available: https://www.elsevier.com/books/distributed-and-cloud-computing/hwang/978-0-

12-385880-1

XXX International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025

[8] J. Hamilton, "Internet-scale service infrastructure efficiency," in Proc. LADIS'08, 2008. [Online].

Available: https://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_LADIS2008.pdf

[9] I. Foster, C. Kesselman and S. Tuecke, "The anatomy of the grid: Enabling scalable virtual

organizations," International Journal of High Performance Computing Applications, vol. 15, no. 3,

pp. 200-222, 2001. doi: https://doi.org/10.1177/109434200101500302

[10] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg and I. Brandic, "Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering computing as the 5th utility," Future Generation

Computer Systems, vol. 25, no. 6, pp. 599-616, 2009. doi:

https://doi.org/10.1016/j.future.2008.12.001

[11] Y. Jadeja and K. Modi, "Cloud computing - concepts, architecture and challenges," in Proc.

ICCCNT’12, Coimbatore, 2012, pp. 1-5. doi: https://doi.org/10.1109/ICCCNT.2012.6158533

[12] J. Peng, X. Zhang, Z. Lei, B. Zhang, W. Zhang and Q. Li, "Comparison of several cloud computing

platforms," in Proc. ISISE'09, pp. 23-27. doi: https://doi.org/10.1109/ISISE.2009.58

[13] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose and R. Buyya, "CloudSim: a toolkit for

modeling and simulation of cloud computing environments and evaluation of resource

provisioning algorithms," Software: Practice and Experience, vol. 41, no. 1, pp. 23-50, 2011. doi:

https://doi.org/10.1002/spe.995

[14] D. Ghosh, R. Sharman, H. Raghav Rao and S. Upadhyaya, "Self-healing systems - survey and

synthesis," Decision Support Systems, vol. 42, no. 4, pp. 2164-2185, 2007. doi:

https://doi.org/10.1016/j.dss.2006.05.009

[15] T. Wood, P. Shenoy, A. Venkataramani and M. Yousif, "Black-box and gray-box strategies for virtual

machine migration," in Proc. NSDI’07, 2007. [Online]. Available:

https://www.usenix.org/legacy/events/nsdi07/tech/full_papers/wood/wood.pdf

[16] R. Buyya, C. Vecchiola and S. T. Selvi, *Mastering Cloud Computing: Foundations and Applications

Programming*, 1st ed. Cambridge, MA, USA: Morgan Kaufmann, 2013. [Online]. Available:

https://www.elsevier.com/books/mastering-cloud-computing/buyya/978-0-12-411454-8

[17] D. Kliazovich, P. Bouvry and S. U. Khan, "GreenCloud: a packet-level simulator of energy-aware

cloud computing data centers," Journal of Supercomputing, vol. 62, no. 3, pp. 1263-1283, 2012. doi:

https://doi.org/10.1007/s11227-010-0504-1

[18] N. Farrington and A. Andreyev, "Facebook’s data center network architecture," in Proc. ONS’13,

2013. [Online]. Available: https://www.opencompute.org/files/ONS2013-facebook-network-

infra.pdf

[19] D. Abts, M. R. Marty, P. M. Wells, P. Klausler and H. Liu, "Energy proportional datacenter

networks," in Proc. ISCA’10, pp. 338–347. doi: https://doi.org/10.1145/1815961.1816004

[20] S. R. Alam et al., "Early evaluation of IBM BlueGene/P," in Proc. SC’07, pp. 1-12. doi:

https://doi.org/10.1145/1362622.1362708

[21] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee and N. McKeown,

"ElasticTree: Saving energy in data center networks," in Proc. NSDI’10, pp. 249-264. [Online].

Available: https://www.usenix.org/legacy/event/nsdi10/tech/full_papers/heller.pdf

