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Abstract— Cloud computing is an important source of computing worldwide because it can serve customers 
as needed and without additional costs. Moreover, it serves the customer at the lowest cost and fastest time 
by providing computing sources in various forms. Aside from providing millions of users the means to use 
offered services through their own computers, terminals, and mobile devices, studying cloud computing on 
real cloud systems is difficult at times. Thus, researchers used a specialized program called cloud simulator 
to study cloud computing, which in turn studies cloud computing from different perspectives, such as energy 
consumption, cloud services, and resource management. In this paper, we used Green Cloud simulator to 
model and simulate cloud data centers (DCs). Through this simulator, we presented an experimental 
comparative study among common task scheduling algorithms in cloud computing (i.e., green, power-saver, 
random, and round-robin schedulers). These algorithms are discussed and analyzed briefly. The metrics used 
to evaluate the task scheduling algorithms include (1) server loads, (2) DC loads, and (3) number of servers 
used. 
Keywords—Cloud computing, Data Center, Simulation, scheduling. 
     

1. INTRODUCTION  

Organizations are currently focused on attaining an enduring information and 

communications technology technique for their business processes. The major motivation for 

such intent is to reduce their carbon impact and environmental influences, as well as their 

operational costs. In this context, cloud computing offers a useful means to achieve these goals. 

Cloud computing is a promising technology that is becoming increasingly prevalent because it 

facilitates access to computing resources, such as programs, storages, expert services, video 

games, films, and music, whenever necessary. These resources are provided such that cloud 

clients do not need to be aware of how or from where they are obtaining these materials. 

Instead, clients only need to be concerned with acquiring broadband connectivity to the cloud. 

Data centers (DCs) possess powerful computing and storage capabilities. Important 

domains, such as particle physics, scientific computing and simulation, Earth observation, and 

oil prospecting, are supported by DCs. Numerous densely packed blade servers are utilized by 

DCs to maximize management efficiency and space utilization. The energy consumed by DCs 

remarkably increases with the quantity and scale of servers, that is, the amount of such energy 

is directly related to the number of hosted servers and their respective workloads [1]. 
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Considering the increased development of cloud computing and the amount of energy 

consumed by it, many researchers seek to find solutions that will reduce the amount of energy 

consumed by cloud computing infrastructure. However, the complexity of a cloud computing 

environment is an obstacle faced by numerous researchers when conducting studies on a real 

cloud computing infrastructure. Cloud simulation software is used to overcome this obstacle. 

This study aims to evaluate and compare common task scheduling algorithms (i.e., green, 

power-saver, random, and round-robin schedulers) used in cloud system [2].  

2. CLOUD COMPUTING 

Many experts have defined cloud computing from different aspects. The most common 

definitions of cloud computing are listed as follows: 

• [3] ”Clouds are a large pool of easily usable and accessible virtualized resources (such 

as hardware, development platforms and/or services). These resources can be 

dynamically re-configured to adjust to a variable load (scale), allowing also for optimum 

resource utilization. This pool of resources is typically exploited by a pay-per-use mode 

which guarantees are offered by the Infrastructure Provider by means of customized 

SLA”.  

• [4] “Cloud Computing is a model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources (e.g., networks, 

servers, storage, applications, and services) that can be rapidly provisioned and released 

with minimal management effort or service provider interaction”. 

• [5] “Cloud is a parallel and distributed computing system consisting of a collection of 

inter-connected and virtualized computers that are dynamically provisioned and 

presented as one or more unified computing resources based on service-level 

agreements (SLA) established through negotiation between the service provider and 

consumers.” 

The definitions presented by [3][4][5] are explanations that are most relevant to this 

research. Hence, cloud computing can possibly be depicted as a set of DCs that connect to the 

Internet to offer their services. These DCs are based on the virtualization of their infrastructure 

such that they have virtual machines (VMs) as basic units of computation. In general, they offer 

hardware (i.e., VM for computations) or software services. These services are provided by 

mutual agreement through a SLA contract and charged on the basis of a per-use pricing 

method. Based on the above dentitions, imagining the need for a scheduling algorithm that 

attempts to find suitable physical machines that can meet the client’s requirements in the DC 

becomes possible. The DC needs to have enough resources, such as bandwidth (BW), which is 

important in handling user’s tasks. Considering that cloud computing is a business model, the 

SLA agreement should be considered. Now, forming the job’s life cycle by using three steps 

starting from the signing of the SLA contract, then finding the best cloud provider, and ending 

with managing the resources inside the cloud provider becomes possible. This work has built 

its framework and drawn its assumptions based on the provided definitions. 

Figure 1 depicts the general view of cloud computing. In this figure, several cloud service 

providers offer various services through the Internet. Clients around the world are connected 

and send their jobs to the cloud providers via the Internet. However, this variation and 

multiplicity of services increase the size of search space for clients. Therefore, new methods are 

needed to orchestrate the services to save clients’ time. To understand the architecture of these 
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services in more detail, the next section shows the components of cloud computing and their 

relation to this work. 

 
Figure 1  General View of Cloud Computing 

2.1. Cloud Computing: Architecture and Provisioning  

Cloud computing has emerged as a computing infrastructure that enables the rapid 

delivery of computing resources as a utility in a dynamically scalable, virtualized manner. The 

advantages of cloud computing over traditional computing include agility, low entry cost, 

device independence, and scalability (Tsai et al., 2010).  

Cloud models use the DC as a basic unit in their architecture [6][5]. These models can be 

viewed as a collection of massively distributed DCs [7]. In other words, cloud models are a set 

of cloud service providers located around the world that offer services via their DCs.  

A DC [8], or server farm as it is sometimes called, is a massive, centralized repository for 

data storage, computation, and management. It is a farm for hosting huge number of servers 

or processing elements, clusters, and/or huge amounts of storage to serve customer requests.  

These DCs are connected to the Internet and merge with other components to form the 

cloud paradigm. The essential components that make up cloud computing are listed in the 

following paragraphs [9][10][11](Foster et al., 2008; Riml et al., 2009; Oliveira et al., 2010): 

2.1.1. Clients: 

 A cloud client generally consists of computer software or hardware that relies on the 

use of cloud computing for the delivery of applications or one that is designed specifically for 

the delivery of cloud services. Examples include computers, phones and other devices, 

operating systems, and browsers. 

2.1.2. Services: 

 Services refer to software systems that are designed to support interoperable machine-

to-machine interaction over a network that may be directly accessed by other cloud computing 

components, software (e.g. software plus services), or end users. 

2.1.3. Application: 

 Cloud applications leverage the use of cloud computing in their software architecture, 

which typically eliminates the underlying need to run the application on the user’s own 
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computer. This service alleviates the burden of software maintenance, ongoing operation, and 

ongoing support. This kind of service is also called the software as a service. 

2.1.4. Platform:  

Cloud platforms, or platform as a service, deliver a computing platform that consumes 

cloud infrastructure while supporting cloud applications. They facilitate the deployment of 

many applications without the same complexity and cost of purchasing and managing 

whatever underlying layers of hardware and software that would be required. Platforms in 

cloud computing fall into a few different categories, namely, services, solution stacks, and 

structured storage. 

2.1.5. Storage:  

Cloud storage refers to the delivery of data storage as a service (including database-like 

services) and is often billed on a utility computing basis (e.g., per gigabyte per month). 

2.1.6. Infrastructure:  

Cloud computing infrastructure, or infrastructure as a service (IaaS), involves the 

delivery of a computer infrastructure as a service that is typically a platform virtualization 

environment. 

Figure 2 summarizes the aforementioned cloud comportments in the shape of a stacked 

layer. The scope of this work falls within the infrastructure layer, such that the cloud providers 

offer VMs as computation units to clients with urgent tasks that need to be executed. The use 

of IaaS to execute clients’ task is inspired by the cloud characteristics described in the next 

section. 

 
Figure 2 Cloud Computing Stack Layers 

2.2. Cloud deployment model 

Cloud computing is classified into three types [12] (Peng et. al, 2009):  

2.2.1. Private Cloud  

This classification offers hosted services within the organization. Firewall and security 

procedures protect the hosted services from being accessed by unauthorized users. 
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2.2.2. Public Cloud   

This classification offers hosted services that can be accessed by any organization or 

individual. 

2.2.3. Hybrid Cloud  

This classification is a combination of the two aforementioned types, where private 

cloud can be linked to one or more external cloud services. 

3. SYSTEM MODEL 

The system model is developed based on [13][14][15]. Figure 3 depicts this model, which 

mainly consists of the cloud users, incoming tasks, VMs and server controllers, scheduling 

algorithm controllers, and servers. 

 
Figure 3 System Model 

1. User represents the cloud user who will send tasks to the cloud computing DC.  

2. Task refers to the task sent by cloud users to the cloud computing DC. Each task has the 

following elements: size, maximum completion time, and ID number.  

3. DC Main Queue holds the waiting tasks for a period of time < task deadline. 

4. Scheduling Algorithm Controller determines the scheduling algorithm that will be used to 

handle the incoming tasks (e.g., round-robin, green, random, and power-saver schedulers). 

5. VM and server controller handle the received tasks after accepting the VM status and 

decision from the scheduling algorithm controller.  

6. Servers create necessary VM and execute the tasks of users.  

7. Finished tasks send the completed tasks to users. 

4. SIMULATION TOOL  

The architecture and main features of the cloud computing simulator used in this study 

are explained in this section. Social networking, content delivery, web hosting, and real-time 

instrumented data processing are examples of traditional and emerging cloud-based 

applications. These types of applications possess different compositions, configurations, and 

deployment requirements. Quantifying the performance of scheduling and allocation policies 

in real cloud environments under different conditions and various applications and service 

models is extremely difficult due to the following reasons. First, users have heterogeneous and 

conflicting quality of service requirements, and second, clouds have varying demands, supply 



International Journal of Artificial Intelligence Applications. Volume 1 | Number 1 | June 2025                                                        XXX 

 

patterns, and system sizes. When real infrastructure, such as Amazon EC2, is adopted, 

experiments are limited to the infrastructure scale. Thus, reproducing the results becomes 

challenging. This situation arises because the conditions that prevail in an Internet-based 

environment cannot be controlled by resource allocation developers and application 

scheduling algorithms [16]. Therefore, we used the GreenCloud simulator, which can be 

applied to develop novel solutions for the monitoring, resource allocation, workload 

scheduling, and optimization of communication protocols and network infrastructure. The 

GreenCloud simulator is an extension of the well-known NS2 network simulator and is 

released under the General Public License Agreement [17]. 

4.1. Simulator Architecture 

Figure 2 shows the structure of the GreenCloud simulator using a three-tier DC 

architecture.  

The main components of this simulator are listed as follows [17]: 

1. Servers that form DC in the cloud are used to run tasks. 

2. Switches and links constitute the network topology and the resulting connections by 

providing different cabling solutions. 

3. Workloads are considered objects that model various cloud user services, such as instant 

messaging and social networks. 

4.2. Simulator Implementation 

In this experiment, GreenCloud was used to test, evaluate, and compare the adopted 

and proposed algorithms. Implementation was realized by modifying the original source code 

of the simulator. The original source code was written in C++ and the Tool Command 

Language and was based on the NS2 network simulator. Eclipse Standard editor version 4.4 

was used for the modification. 

Figure 4 provides a general view of the simulation steps. The GreenCloud simulator is 

set up and installed during the pre-simulation phase, and the simulator configurations are 

read from the files. In the next step, the DC is created, and the cloud network is developed. 

This step requires the simulation configuration settings that represent the network and the 

servers’ specifications. Notably, each server may have its own specifications for forming a 

heterogeneous paradigm. Subsequently, the simulator initiates an event for the arrival of each 

task to the system. After triggering the events, the simulator begins to execute the scheduling 

algorithm to map the tasks onto appropriate VMs. Then, the simulator begins monitoring the 

execution of tasks and recording the ending time of execution and the consumed energy in 

special tracing files. Simulation stops when all the tasks have passed through the GreenCloud 

simulator, and then the post-simulation phase begins. This phase involves reading the tracing 

files and sending the results to an Excel sheet for analysis. 
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Figure 4 Simulation Steps 

The main configuration for the GreenCloud simulator used in this work is provided in 

Table 1. The table lists the components of the proposed system and their specifications. 
Table 1 GreenCloud Configuration 

Parameters Value 

DC type Three–tier topology 

No. of core switches 2 

No. of aggregation switches 4 

No. of access switches 8 

No. of servers 1,440 

Access links 1 Gb 

Aggregation links 1 Gb 

Core links 10 Gb 

DC load 0.1, 0.2, 0.3, …, 0.9, 1.0 

Simulation time 60 min 

Power management in server DVFS and DNS 

Task size 8,500 bit 

Task deadline 20 s 

Task type High-performance computing  

5. DC DESIGN MODEL 

Some commonly adopted network architectures in DCs include multi-tier architectures 

(i.e., two-tier (2T), three-tier (3T), and 3T high-speed (3Ths) architectures [18]). 3T is the most 

popular architecture in large-scale DCs. In such architecture, the core layer connects the DC to 

the Internet backbone, the aggregation layer provides diverse functions (e.g., content 

switching, secure socket layer, and firewalls), and the access layer connects the internal data 

servers that are arranged in a rack–blade assembly. Multiple links are present from one tier to 

another. These links, along with multiple internal servers, ensure availability and fault 

tolerance in the DC but at the cost of generating redundancy. 

Server farms in current DCs include over 100,000 hosts, in which 70% of all 

communication activities are performed internally [19]. The most frequently applied DC 

architecture is the 3T architecture. The three layers of the DC architecture, namely, the core, 

aggregation, and access networks, are presented in Figure 5 [20]. 

The 3T DC topology selected for the simulations includes 1,440 servers, which are set 

into 16 racks (i.e., 90 servers per rack). The racks are linked using two cores, four aggregations, 

and eight access switches. The network links that connect the aggregation switches to the core 

have a data rate of 10 Gb/s. The links that connect the aggregation and access switches, along 
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with the access links that connect computing servers to the top-of-rack switches, have a data 

rate of 1 Gb/s. The propagation delay of all the links is fixed at 3.3 µs. Table 1 summarizes the 

simulation setup parameters [21]. 

6. SYSTEM PARAMETERS 

The criterion for evaluating the virtualized environment is introduced in this section. 

Two types of parameters are used: input and output. Input parameters configure the system, 

whereas output parameters measure system performance. 

6.1. Input Parameters 

The following input parameters are fed to the simulator before it starts. 

• Number of DCs: Given that we are focusing on a VM in DC and the consumed energy 

in DC, only one DC is assumed to be present.  

 
Figure 5 GreenCloud Simulator: A 3T Architecture [17] 

• Number of VMs in DC and their specifications: The number of VMs in DC that are 

dedicated to finishing all the submitted tasks and the specifications of these VMs. 

• Number of tasks submitted and their specifications: A set of tasks is generated and 

submitted to the DC, and each task has a deadline and size. The scheduler should handle 

tasks according to their specifications. 

• Scheduling algorithm: The manner in which tasks are mapped onto VMs affects the 

simulation results. In each experiment, the algorithm that maps the tasks onto VMs is 

presented as an input parameter. In this research, we adopt two task scheduling 

algorithms, namely, the green scheduler algorithm and PSSA. 

6.2. Output Parameters 

Several performance metrics are used to test and evaluate the proposed models. These 

parameters determine system efficiency according to the input parameters. The output 

parameters are described as follows: 
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• Makespan: The maximum completion time of all the received tasks per unit time. This 

parameter indicates the quality of job assignment to resources in terms of execution time. 

This parameter can be written formally as Equation 1. 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥{𝐹𝑇𝑗|∀𝑗 ∈ 𝑙} , (1) 

where 𝐹𝑇𝑗 denotes the completion time of task 𝑗 that belongs to task list 𝑙. 

• Throughput: The number of executed tasks is calculated to study the efficiency of 

meeting task deadlines. This parameter is calculated using Equation 2. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑙 = ∑ 𝑋𝑗𝑗∈𝑙 ,  (2) 

where 𝑋𝑗 is 

 
Figure 6 Detailed Components of Switch Energy Consumption 

𝑋𝑗 = {
1, 𝑡𝑎𝑠𝑘 𝑗 ℎ𝑎𝑠 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

• Task failure: The number of task failures indicates the number of tasks that fail to meet 

their deadlines, as shown in Equation 4.  

𝐹 = ∑ 1 − 𝑋𝑗𝑗∈𝑙 ,  (4) 

where 𝐹 is the number of is failed tasks; and 𝑋𝑗 is the decision variable that indicates the 

task’s completion time, which is provided in Equation 3. 

• DC and server loads: The DC load represents the percentage of computing resources 

that are allocated for incoming tasks with respect to DC capacity. This load should be 

between 0% and 100%. A load close to 0 indicates an idle DC, whereas a load equal to 

100% denotes a saturated DC [17]. To calculate DC and server loads, let 𝑆 be the set of 𝑀 

servers in DC, where 𝑆 =  {𝑆1, 𝑆2, … , 𝑆𝑀}. Each server 𝑠𝑖 has nominal million instructions 

per second (MIPS; N), which denotes the maximum computing capability of the server 

at the maximum frequency. Server load 𝐶 corresponds to the current load of the server 

in MIPS. Equation 5 indicates the load for each server si, which is equal to the ratio of 

the current server load to the maximum computing capability.  

𝑙𝑜𝑎𝑑 (𝑠𝑖) =  
𝐶(𝑠𝑖)

𝑁(𝑠𝑖)
   (5) 

• The DC load measured using Equation 6 is equal to the average load of all its hosts. 

𝑙𝑜𝑎𝑑 (𝐷𝐶) =
∑

𝐶(𝑠𝑖)

𝑁(𝑠𝑖)∀𝑠∈𝑆

𝑀
          (6) 

• DC energy consumption: The total energy consumption in DC represents the sum of the 

energy consumed by the servers and switches [17]. In this research, we focus on the 

energy of servers and network switches. Hence, the power consumption of an average 

server can be expressed using Equation 7. 

𝑃 = 𝑃𝑓𝑖𝑥𝑒𝑑 + 𝑃𝑓 . 𝑓3 , (7) 

where 𝑃𝑓𝑖𝑥𝑒𝑑 accounts for the portion of the consumed power that does not scale with 

the operating frequency 𝑓, and Pf is the frequency-dependent CPU power consumption. 
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The power consumption of a switch can be expressed using Equation 8. 

𝑃𝑠𝑤𝑖𝑡𝑐ℎ = 𝑃𝑐ℎ𝑎𝑠𝑠𝑖𝑠 + 𝑛𝑙𝑖𝑛𝑒𝑐𝑎𝑟𝑑𝑠 + 𝑃𝑙𝑖𝑛𝑒𝑐𝑎𝑟𝑑 + ∑ 𝑛𝑝𝑜𝑟𝑡𝑠,𝑟 + 𝑃𝑟
𝑅
𝑖=0     (8) 

Figure 6 shows the detailed components of switch energy consumption, where 𝑃𝑠𝑤𝑖𝑡𝑐ℎ is 

the total power consumed for the switch, 𝑃𝑐ℎ𝑎𝑠𝑠𝑖𝑠  is the consumed power for the switch’s 

chassis (hardware), 𝑛  is the number of line cards in the switch, 𝑃𝑙𝑖𝑛𝑒𝑐𝑎𝑟𝑑𝑠 is the power 

consumed using any active switch line card, and 𝑃𝑟  is the power consumed by a port 

(transceiver) that runs at bit rate 𝑟. 

7. RESULTS 

To demonstrate the impact of server virtualization on the server’s energy consumption, 

two experiments were conducted to measure the following parameters: server’s energy 

consumption, DC load, and makespan. That is, PSSA is used under the GreenCloud simulator 

to compare two simulation scenarios (with and without server virtualization). 

7.1. Makespan 

Figure 7 represents the total time required to finish all tasks in minutes for each 

scheduling algorithm, the experiment was carried out 10 times, each time with a different DC 

load starting from 10% to 100%. The results reveled that random and round robin schedulers 

showed the worst finishing time from 10% to 60%. Meanwhile, the green scheduler required 

more time to finish all tasks at load 80%–100%. The power-saver scheduler showed the best 

execution time among all schedulers at all simulation loads. 

 
Figure 7 Simulation Time at Different Simulation Loads 

7.2. DC Load 

Figure 8 represents the DC load after implementing different simulation scenarios with 

varying loads starting from 10% to 100%. The figure shows a continuous load difference 

between the four scheduling algorithms. The power-saver scheduler shows an improvement 

in load from 10% to 70%. Meanwhile, at 80% to 100%, the random scheduler showed 

remarkable DC load. 
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Figure 8 DC Load at Different Simulation Loads 

7.3. DC energy consumption 

Figure 9 represents the consumed energy of servers at different DC loads for the four 

scheduling algorithms (i.e., our proposed scheduling algorithm, green scheduling, round 

robin, and random algorithms). The experiment was carried out 10 times, each time with a 

different DC load starting from 10% to 100%. When the DC load increases, the total energy 

consumed by the servers increases for all four schedulers. However, the power-saver 

scheduler demonstrated a better energy saving mechanism than other scheduling algorithms. 

Here, a higher DC load implies greater energy consumption. 

 
Figure 9Energy consumption at DC Loads 

8. DISCUSSION 

The green and power-saver schedulers perform better in terms of power saving, as 

revealed in Figure 9. The reason behind this phenomenon is that the round robin and random 

schedulers have used all 1440 servers to finish all DC tasks, whereas the green and power-

saver schedulers at 30% load have only used one-third of all 1440 servers to finish the DC tasks 

and to keep the remaining servers in DNS mode.  
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The results also showed that the power-saver scheduler performs better than the green 

scheduler in terms of utilization. Hence, the total consumed energy using the power-saver 

scheduler is less than that of the green scheduler (Figure 13). The reason is that the green 

scheduler  loops in all machines until it can schedule the task. Therefore, if all machines are 

occupied and cannot schedule the task, then the task will be marked as failed. Meanwhile, the 

power-saver scheduler tries to schedule on the powered-on machines until it is scheduled. 

However, if all machines that are turned on are occupied, then the system will turn on another 

machine and schedule the task in it. If no more machines can be turned on, then the system 

will give another try, and if all the machines are still occupied, then the task is marked as failed. 

9. CONCLUSIONS 

In this study, we propose a new task scheduling algorithm called power-saver 

scheduling algorithm based on DVFS and DNS. The proposed scheduling algorithm was 

compared with the best existing energy-efficient scheduling algorithm (i.e., green scheduler), 

round robin algorithm, and random algorithm. The comparison was conducted using 

GreenCloud simulator with a focus on energy consumption, server load, DC load, and task 

finishing time. The simulation results revealed that the proposed algorithm performed better 

than all schedulers in all aspects (i.e., energy consumption, server load, DC load, and task 

finishing time). The results also demonstrated that the proposed algorithm did not 

compromise the DC performance, and all tasks were fully completed as they achieved the SLA. 

According to these results, the scheduling algorithm based on DVFS and DNS can offer 

enhanced performance in terms of power consumption and server load while maintaining the 

SLA. 
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