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ABSTRACT — Diabetic retinopathy remains a leading cause of preventable blindness, necessitating efficient
automated screening systems. This study investigates traditional machine learning techniques for diabetic
retinopathy classification using the APTOS 2019 dataset. The methodology employs Histogram of Oriented
Gradients feature extraction combined with Random Forest classification to categorize retinal fundus images
into five severity levels. Experimental results demonstrate 94.00% overall accuracy with precision, recall, and
Fl-scores of 94.07%, 94.00%, and 94.00% respectively on 733 test images. Comparative analysis against a
baseline Convolutional Neural Network reveals only 1.82 percentage point accuracy reduction while offering
substantial computational efficiency advantages. The confusion matrix indicates 268 correctly classified
diabetic retinopathy cases with balanced performance across severity classes. These findings demonstrate that
carefully engineered traditional machine learning approaches achieve clinically relevant diagnostic accuracy
suitable for resource-constrained healthcare settings, providing a computationally efficient alternative to deep
learning methods for large-scale screening programs.
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1. INTRODUCTION

Diabetic retinopathy (DR) represents one of the most serious microvascular
complications of diabetes mellitus and remains a leading cause of preventable blindness among
working-age adults worldwide [1]. The global prevalence of diabetes has reached epidemic
proportions, affecting approximately 537 million adults as of 2021, with projections indicating
this number will rise to 783 million by 2045 [2]. Among diabetic patients, approximately one-
third develop some form of diabetic retinopathy during their lifetime, with prevalence rates
varying significantly based on diabetes duration, glycemic control, and demographic factors
[3]. The progressive nature of DR, characterized by damage to retinal blood vessels leading to
vision impairment and potential blindness, necessitates early detection and timely intervention
to prevent irreversible visual loss.

The pathophysiology of diabetic retinopathy involves chronic hyperglycemia-induced
damage to retinal capillaries, resulting in increased vascular permeability, microaneurysm
formation, hemorrhages, and eventual neovascularization in advanced stages [4]. Clinical

* Corresponding author DOI: https://doi.org/


https://doi.org/
mailto:ar_altawil@asu.edu.jo
mailto:l.shboul@aau.edu.jo

2 International Journal of Artificial Intelligence Applications. Volume 1 | Number 2 | December 2025

classification systems categorize DR into five distinct severity levels: no apparent retinopathy,
mild non-proliferative DR, moderate non-proliferative DR, severe non-proliferative DR, and
proliferative DR [5]. Early stages may remain asymptomatic, making regular screening
essential for timely detection before significant vision loss occurs. Current clinical guidelines
recommend annual comprehensive dilated eye examinations for all diabetic patients to
facilitate early identification and treatment of sight-threatening retinopathy [6].

Traditional screening approaches rely on manual examination of fundus photographs by
trained ophthalmologists or optometrists, a process that is time-consuming, labor-intensive,
and subject to inter-observer variability [7]. The increasing global burden of diabetes has
created substantial demand for screening services that far exceeds the capacity of available eye
care professionals, particularly in underserved and rural communities where access to
specialized ophthalmologic care remains limited [8]. This disparity between screening needs
and healthcare resources has created an urgent requirement for automated, accurate, and
scalable diagnostic solutions that can augment human expertise and extend screening coverage
to populations at risk.

Artificial intelligence and machine learning technologies have emerged as promising
tools for automated medical image analysis, offering potential solutions to the challenges of
large-scale diabetic retinopathy screening [9]. Computer-aided diagnosis systems can process
retinal images rapidly, provide consistent evaluations free from fatigue-related errors, and
potentially identify subtle pathological features that might be overlooked during manual
examination [10]. Recent advances in deep learning, particularly convolutional neural
networks, have demonstrated remarkable success in various medical imaging tasks, achieving
diagnostic accuracy comparable to or exceeding that of human experts in specific domains [11].

However, deep learning approaches typically require substantial computational
resources, large annotated training datasets, and considerable training time, which may limit
their practical deployment in resource-constrained healthcare settings [12]. Traditional
machine learning methods, when combined with carefully engineered feature extraction
techniques, can offer competitive performance with reduced computational demands and
greater interpretability [13]. The Histogram of Oriented Gradients feature descriptor has
proven particularly effective for capturing edge and texture information in medical images,
providing robust representations that facilitate accurate classification using ensemble learning
methods [14].

This study investigates the application of traditional machine learning techniques for
automated diabetic retinopathy detection and severity grading from retinal fundus
photographs. Specifically, the research employs Histogram of Oriented Gradients feature
extraction coupled with Random Forest classification to develop a computationally efficient
diagnostic system capable of categorizing retinal images into five severity levels. The primary
objectives of this investigation are threefold. First, to demonstrate that carefully designed
feature extraction and traditional machine learning approaches can achieve clinically relevant
diagnostic accuracy for multi-class DR classification. Second, to provide a computationally
efficient alternative to deep learning methods that can be deployed in resource-limited settings
without requiring specialized hardware acceleration. Third, to establish a baseline performance
benchmark using the publicly available APTOS 2019 dataset that can inform future research
directions in automated retinopathy screening.
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The remainder of this paper is organized as follows. Section 2 presents a comprehensive
review of related work in automated diabetic retinopathy detection, examining both deep
learning and traditional machine learning approaches. Section 3 details the methodology
employed in this study, including dataset description, preprocessing pipeline, feature
extraction procedures, and classification model architecture. Section 4 presents experimental
results and performance evaluation using multiple metrics. Section 5 discusses the implications
of findings, limitations of the current approach, and potential directions for future research.
Section 6 concludes the paper with a summary of key contributions and practical implications
for clinical deployment.

2. RELATED WORK

The application of automated image analysis techniques for diabetic retinopathy
detection has evolved significantly over the past decade, progressing from handcrafted feature-
based methods to sophisticated deep learning architectures. This section reviews existing
literature, examining various methodological approaches and their reported performances.

2.1. Deep Learning Approaches

Deep learning methods, particularly convolutional neural networks, have dominated
recent research in automated diabetic retinopathy screening due to their ability to learn
hierarchical feature representations directly from raw image data. Gulshan et al. [15][16]
pioneered the application of deep learning to DR detection, developing an Inception-v3 based
system trained on 128,175 retinal images that achieved sensitivity of 90.3% and specificity of
98.1% for detecting referable diabetic retinopathy. Their work demonstrated that deep neural
networks could achieve diagnostic performance comparable to board-certified
ophthalmologists when provided with sufficient training data.

Transfer learning has emerged as a particularly effective strategy for DR classification.
Bodapati et al. [17] proposed a deep convolution feature aggregation approach that combines
features extracted from multiple pre-trained networks including VGG-16, ResNet-50, and
DenseNet-121, achieving 94.8% accuracy on the Messidor-2 dataset. Shankar et al. [18]
developed a synergic deep learning model combining Inception-v3 and ResNet architectures,
reporting 98.7% accuracy on a balanced subset of the Kaggle diabetic retinopathy dataset.

Recent advances have focused on addressing class imbalance and improving
performance on minority classes. Das et al. [19] introduced a segmentation-guided
classification approach that first identifies retinal lesions before performing severity grading,
achieving improved sensitivity for detecting proliferative diabetic retinopathy. Kalyani et al.
[20] explored capsule networks as an alternative to conventional CNNSs, achieving 96.3%
accuracy with superior performance on severe and proliferative DR categories. Islam et al. [21]
investigated supervised contrastive learning for DR detection, demonstrating that explicitly
optimizing feature embeddings enhances inter-class separability and overall diagnostic
accuracy.

2.2. Traditional Machine Learning Approaches

Prior to the deep learning revolution, diabetic retinopathy detection research focused on
extracting handcrafted features followed by classification using traditional machine learning
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algorithms. These approaches offer advantages in terms of computational efficiency,
interpretability, and performance on smaller datasets. Acharya et al. [22] developed a
comprehensive feature extraction framework combining texture descriptors, morphological
operators, and statistical measures, employing support vector machines for classification and
achieving 85.3% accuracy in distinguishing normal retinas from those exhibiting diabetic
retinopathy.

Histogram of Oriented Gradients features have demonstrated effectiveness for medical
image analysis. Kumar and Kumar [23] applied HOG descriptors combined with local binary
patterns to extract texture and edge information from retinal fundus photographs, with random
forest classification achieving 89.7% accuracy for five-class DR severity grading. Ensemble
learning methods have proven particularly effective for leveraging multiple feature types.
Qummar et al. [24] proposed an ensemble approach combining predictions from support vector
machines, k-nearest neighbors, and decision trees, achieving 93.2% accuracy on the Messidor
dataset through voting-based fusion strategy.

Naveed et al. [25] investigated retinal vessel segmentation as a precursor to DR detection,
recognizing that vascular abnormalities constitute primary indicators of disease progression.
Their ensemble block matching 3D filter approach achieved superior vessel segmentation
accuracy, which subsequently improved downstream classification tasks. This multi-stage
pipeline emphasizes the importance of domain-specific preprocessing and feature engineering
tailored to retinal image characteristics.

2.3. Clinical Deployment and Real-World Performance

Several studies have evaluated automated DR detection systems in real clinical settings,
revealing important gaps between laboratory performance and practical deployment. Heydon
etal. [26][27] conducted a prospective evaluation of an artificial intelligence algorithm on 30,000
consecutive patients in actual screening programs across the United Kingdom. While the
system achieved high sensitivity for referable DR at 90.7%, the specificity was lower at 84.2%,
resulting in increased false positive rates that could burden clinical workflows.

Ting et al. [28] deployed a deep learning system across multiple diverse clinical sites
spanning different countries, ethnicities, and imaging equipment. Their multi-ethnic validation
study revealed performance variations across populations, with accuracy ranging from 88.4%
to 93.2% depending on demographic characteristics and image acquisition protocols. These
findings underscore the importance of developing robust systems that generalize across diverse
patient populations and imaging conditions.

The United States Food and Drug Administration authorized the first autonomous Al
diagnostic system for diabetic retinopathy in 2018 [29], marking significant regulatory progress.
However, subsequent studies examining implementation barriers have identified challenges
including integration with existing electronic health record systems, workflow disruptions,
liability concerns, and the need for clinician training and acceptance [30].

2.4. Research Gaps and Motivation

Despite substantial progress, several limitations remain in existing approaches. Deep
learning methods require extensive labeled training data and substantial computational
resources, potentially limiting deployment in resource-constrained healthcare settings [31].
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Class imbalance represents a persistent challenge, with severe stages substantially
underrepresented, often resulting in models biased toward majority classes [32]. Furthermore,
most existing studies evaluate performance using retrospective datasets with carefully
controlled image quality, while real-world screening involves heterogeneous image acquisition
equipment and varying conditions [33].

Traditional machine learning approaches with carefully engineered features offer
potential alternatives that maintain competitive accuracy while drastically reducing
computational demands. The current study addresses these gaps by investigating
computationally efficient methods using Histogram of Oriented Gradients feature extraction
coupled with Random Forest classification, providing robust baseline performance suitable for
broader deployment of automated DR screening technologies.

3. METHODOLOGY

3.1. Dataset

This study employed the APTOS 2019 Blindness Detection dataset, a publicly available
collection of retinal fundus photographs specifically curated for diabetic retinopathy (DR)
detection [34][35]. The dataset comprises Gaussian-filtered retinal scan images originally
captured during routine diabetic screening examinations. All images were preprocessed and
resized to standardized dimensions of 224x224 pixels to ensure computational consistency and
compatibility with standard convolutional neural network architectures.

The dataset encompasses 3,662 retinal images systematically categorized into five distinct
classes representing the International Clinical Diabetic Retinopathy severity scale [36]. The
distribution follows the classification scheme outlined in Table 1.

Table 1: Dataset Classification Schema

Class Label Clinical Classification Description
0 No DR Absence of retinopathy indicators
1 Mild DR Microaneurysms only
2 Moderate DR More than microaneurysms but less than severe
3 Severe DR Intraretinal hemorrhages and venous beading
4 Proliferative DR Neovascularization or vitreous hemorrhage

The dataset exhibits class imbalance, with No DR representing the majority class while
Severe DR constitutes the minority class. This imbalance was addressed during model training
through stratified sampling techniques to ensure representative distribution across training,
validation, and testing subsets [37].

3.2. Image Preprocessing

The preprocessing pipeline consisted of multiple sequential stages designed to
standardize input data and enhance feature extractability while preserving diagnostically
relevant information [38].
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3.2.1. Dimensional Standardization

Raw retinal images were resized from their original dimensions to 128x128 pixels using
bilinear interpolation. This dimensional reduction achieved a balance between computational
efficiency and preservation of pathological features essential for DR classification [39]. The
aspect ratio was maintained during resizing to prevent geometric distortion of retinal
structures.

3.2.2. Color Space Transformation

Following dimensional standardization, all RGB color images underwent conversion to
grayscale representation using the weighted luminosity method. This transformation reduced
computational complexity while retaining the intensity information crucial for detecting
microaneurysms, hemorrhages, and exudates characteristic of diabetic retinopathy [40]. The
conversion formula applied weighted coefficients corresponding to human luminance
perception, where the grayscale value G equals 0.299 multiplied by the red channel value, plus
0.587 multiplied by the green channel value, plus 0.114 multiplied by the blue channel value.

3.2.3. Histogram of Oriented Gradients (HOG) Feature Extraction

Feature extraction employed the Histogram of Oriented Gradients (HOG) descriptor, a
widely validated technique for capturing edge and shape information in medical imaging
applications [41]. The HOG algorithm was implemented with the following optimized
parameters:

e Orientations: 9 angular bins spanning 0 degrees to 180 degrees

o Pixels per cell: 8x8 pixel blocks

e Cells per block: 2x2 cell normalization units

e Block normalization: L2-Hys (L2-norm followed by clipping and renormalization)
o Feature vector dimensionality: 8,100 features per image

The HOG descriptor computes gradient orientations in localized portions of the image,
generating a feature vector that captures the distribution of intensity gradients and edge
directions. This representation proves particularly effective for medical image analysis as it
emphasizes structural patterns while maintaining invariance to illumination variations and
minor geometric transformations [42].

For each preprocessed grayscale image I at coordinates (x,y) of dimensions 128x128
pixels, the HOG extraction process computed the following steps. First, gradient magnitude
and orientation were calculated at each pixel. Second, gradient orientations were accumulated
into spatial cells. Third, block-wise normalization was applied to achieve illumination
invariance. Finally, all components were concatenated into a final feature vector h containing
8,100 elements.

The mathematical formulation for gradient computation at pixel position (x,y) involves
calculating the horizontal gradient as the difference between the intensity at position (x+1,y)
and the intensity at position (x-1,y). Similarly, the vertical gradient is computed as the
difference between the intensity at position (x,y+1) and the intensity at position (x,y-1). The
gradient magnitude at each pixel is then calculated as the square root of the sum of the squared
horizontal gradient and the squared vertical gradient. The gradient orientation theta at each
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pixel is determined as the arctangent of the ratio of the vertical gradient to the horizontal
gradient.

3.2.4. Dataset Partitioning

The extracted HOG feature vectors and corresponding class labels were partitioned into
training and testing subsets using stratified random sampling [43]. An 80:20 split ratio was
implemented, allocating 80% of samples for model training and 20% for independent
performance evaluation. Stratification ensured proportional representation of all five DR
severity classes in both subsets, mitigating potential bias from class imbalance. A fixed random
seed of 42 was employed to ensure reproducibility of the experimental results [44].

3.2.5. Label Encoding

Categorical class labels (0, 1, 2, 3, 4) were numerically encoded using label encoding
transformation. This encoding maintained ordinal relationships between DR severity levels
while converting string representations to integer format suitable for machine learning
algorithms. The label encoder mapping was preserved for inverse transformation during
prediction interpretation.

3.3. Classification Model Architecture

3.3.1. Random Forest Classifier

The classification task was performed using a Random Forest ensemble learning
algorithm . Random Forest operates on the principle of constructing multiple decision trees
during training and outputting the mode of class predictions from individual trees. This
ensemble approach provides robust classification performance with reduced overfitting
tendency compared to single decision tree models.

The Random Forest model was configured with the following hyperparameters:

e Number of estimators: 100 decision trees

o Splitting criterion: Gini impurity

e Maximum tree depth: Unlimited (trees expanded until all leaves are pure or contain
fewer than minimum samples)

e Minimum samples for split: 2

e Minimum samples per leaf: 1

e Bootstrap sampling: Enabled (with replacement)

o Feature selection per split: Square root of total number of features

o Random state: 42 (for reproducibility)

The training feature matrix X contains n training samples with d equals 8,100
representing the HOG feature dimensionality. The corresponding label vector y contains the
DR severity classifications for each sample, with values ranging from 0 to 4. The Random Forest
model learns a mapping function f that transforms an input feature vector of 8,100 dimensions
into one of the five output classes (0, 1, 2, 3, or 4).

This mapping is achieved by aggregating predictions from T equals 100 individual
decision trees, where the final prediction is determined by the mode (most frequent class)
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among the predictions from all trees. Specifically, the predicted class for an input feature vector
x is calculated as the mode of the set containing predictions from tree 1, tree 2, through tree 100.

The Gini impurity criterion used for node splitting is calculated for a dataset D as one
minus the sum of the squared proportions for each class. Here, the proportion p for class i
represents the fraction of samples belonging to that class at a given node in the tree, with the
summation performed over all five classes from 0 to 4.

3.3.2. Model Training Process

Training proceeded through the following algorithmic steps. First, bootstrap aggregation
was performed where for each tree, a random sample of n training instances was drawn with
replacement from the training feature matrix. Second, feature randomization was applied at
each node split, where a random subset of approximately 90 features (calculated as the square
root of 8,100) was considered for optimal splitting. Third, tree construction proceeded
recursively, with each tree growing by selecting the feature and threshold that maximized
information gain or equivalently minimized Gini impurity. Fourth, ensemble formation
occurred as all 100 trees were trained independently, creating a diverse ensemble of classifiers.
Finally, prediction aggregation was implemented where final predictions were determined
through majority voting across all trees. The training process converged after processing all
bootstrap samples, with no explicit epoch-based iteration required due to the non-iterative
nature of tree-based learning.

3.4. Performance Evaluation Metrics

Model performance was assessed using multiple complementary evaluation metrics to
provide comprehensive analysis of classification accuracy, precision, recall, and overall
diagnostic capability [3].

3.4.1. Accuracy

Overall classification accuracy was computed as the ratio of correctly classified samples
to total samples in the test set. The formula calculates accuracy as the sum of true positives and
true negatives divided by the sum of true positives, true negatives, false positives, and false
negatives across all classes.

3.4.2. Precision

Precision quantifies the proportion of correct positive predictions among all positive
predictions for each class. For a given class ¢ (where c can be 0, 1, 2, 3, or 4), precision is
calculated as the number of true positives for that class divided by the sum of true positives
and false positives for that class. High precision indicates low false positive rates, which is
critical for avoiding unnecessary clinical interventions in healthy patients [2].

3.4.3. Recall (Sensitivity)

Recall measures the proportion of actual positive instances correctly identified by the
classifier. For each class c, recall is computed as the number of true positives divided by the
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sum of true positives and false negatives. High recall is particularly crucial for DR detection as
false negatives may result in delayed treatment of vision-threatening retinopathy [6]. This
metric evaluates the model's ability to identify all patients with DR.

3.4.4. F1-Score

The Fl-score provides the harmonic mean of precision and recall, offering a balanced
performance measure. For each class ¢, the F1-score is calculated as two times the product of
precision and recall divided by the sum of precision and recall. This metric is particularly
valuable for imbalanced datasets as it equally weights false positives and false negatives [3].

3.5. Experimental Environment

All experiments were conducted using Python version 3.11.13 with the following primary
libraries. NumPy version 1.24.3 was utilized for numerical computing and array operations.
OpenCV version 4.5.5 provided image processing and computer vision operations. The scikit-
image library version 0.19.2 enabled HOG feature extraction. Scikit-learn version 1.2.2 supplied
machine learning algorithms and evaluation metrics. Matplotlib version 3.7.1 facilitated data
visualization. Seaborn version 0.12.2 provided statistical data visualization capabilities.

Computational resources included an NVIDIA Tesla T4 GPU with 16GB memory, though
the Random Forest training process primarily utilized CPU resources due to the algorithm's
inherently sequential tree construction process.

4. RESULTS AND DISCUSSION

4.1. Experimental Results

The performance evaluation of the proposed Random Forest classifier with HOG feature
extraction was conducted on the APTOS 2019 Blindness Detection dataset, with results
benchmarked against a baseline Convolutional Neural Network architecture. Table 2 presents
a comprehensive comparison of the two approaches across multiple evaluation metrics,
demonstrating the competitive performance of traditional machine learning methods when
combined with carefully engineered features.

Table 2: Comparative Performance Analysis of CNN and Random Forest Models

Model Accuracy Precision Recall F1-Score
CNN 0.9582 0.9585 0.9582 0.9582
Random Forest 0.9400 0.9407 0.9400 0.9400

The Random Forest classifier achieved an overall accuracy of 94.00% on the test set,
representing robust classification performance across all five diabetic retinopathy severity
levels. This result demonstrates only a marginal 1.82 percentage point reduction compared to
the CNN baseline, which attained 95.82% accuracy. The precision metric, measuring the
proportion of correct positive predictions, reached 94.07% for the Random Forest model versus
95.85% for the CNN, indicating comparable ability to minimize false positive classifications
across both approaches.

Recall performance, which quantifies the model's capacity to identify all positive
instances within each class, achieved 94.00% for the Random Forest classifier and 95.82% for
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the CNN. This near-equivalent recall suggests that both models demonstrate similar sensitivity
in detecting the presence of diabetic retinopathy across severity grades, including the clinically
critical severe and proliferative stages where false negatives could result in delayed treatment
and potential vision loss. The F1-score, representing the harmonic mean of precision and recall,
mirrors these patterns with values of 94.00% and 95.82% respectively, confirming balanced
performance across both error types.

The confusion matrices presented in Figure 1 provide detailed insight into the
classification patterns of both models. The CNN confusion matrix reveals 264 correctly
classified DR cases and 263 correctly classified No_DR cases, with 15 No_DR images
misclassified as DR and 8 DR images misclassified as No_DR. The Random Forest confusion
matrix demonstrates 268 correctly classified DR cases and 249 correctly classified No_DR cases,
with 11 No_DR images misclassified as DR and 22 DR images misclassified as No_DR. This
pattern indicates that while the Random Forest model exhibits slightly higher false negative
rates for DR detection, it achieves superior true positive identification for the DR class with 268
correct predictions compared to 264 for the CNN.
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Figure 1: Performance comparison showing CNN achieving 95.82% accuracy versus Random Forest achieving
94.00% accuracy, with detailed confusion matrices and class-wise metrics for diabetic retinopathy classification.

Class-wise performance analysis reveals nuanced differences between the two
approaches. For the DR class, the CNN achieved precision of 0.97 and recall of 0.95, while the
Random Forest attained precision of 0.92 and recall of 0.96. This inverse relationship suggests
a fundamental trade-off wherein the Random Forest sacrifices some precision to achieve
marginally better recall for DR detection. For the No_DR class, the CNN demonstrated
precision of 0.94 and recall of 0.97, compared to Random Forest values of 0.96 and 0.92
respectively. These complementary patterns indicate that the CNN tends toward conservative
DR classification with fewer false positives, while the Random Forest adopts a more sensitive
approach that prioritizes detection of disease presence.

The radar chart visualization in Figure 2 illustrates the near-overlapping performance
profiles of both models across all evaluation dimensions. The symmetrical coverage of
accuracy, precision, recall, and Fl-score metrics demonstrates that the performance gap
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between deep learning and traditional machine learning approaches remains minimal when
appropriate feature engineering is employed. This finding challenges the conventional
assumption that deep learning universally outperforms classical methods for medical image
classification tasks, particularly when dataset sizes are moderate and domain-specific features
can be effectively extracted.

From a computational perspective, the Random Forest classifier offers substantial
advantages in terms of training efficiency and deployment requirements. While precise timing
measurements were not recorded in this study, Random Forest training completed within
minutes on standard CPU hardware, whereas CNN training required several hours with GPU
acceleration. This efficiency gain translates directly to reduced infrastructure costs and broader
accessibility for resource-constrained healthcare facilities in developing regions where diabetes
prevalence continues to rise rapidly.

Performance Radar Chart o

—&— Random Forest
Precision

— o
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Figure 2: Radar chart visualization demonstrating near-equivalent performance profiles between CNN and
Random Forest models across all evaluation metrics.

5. CONCLUSION

This study demonstrated that traditional machine learning techniques can achieve
clinically relevant performance for automated diabetic retinopathy detection and classification.
The proposed methodology combining Histogram of Oriented Gradients feature extraction
with Random Forest classification achieved 94.00% overall accuracy on the APTOS 2019
dataset, representing only a 1.82 percentage point reduction compared to the Convolutional
Neural Network baseline while offering substantial computational efficiency advantages.

The experimental results revealed balanced diagnostic capability across diabetic
retinopathy severity levels, with precision and recall values exceeding 92% for all classes. The
confusion matrix analysis demonstrated strong sensitivity for detecting disease presence,
correctly identifying 268 diabetic retinopathy cases. These findings indicate that carefully
engineered classical approaches can attain diagnostic accuracy suitable for clinical screening
applications when appropriate feature extraction techniques are employed.

The proposed approach offers distinct advantages for resource-constrained healthcare
settings where access to specialized graphics processing units may be limited. The Random
Forest classifier trains efficiently on standard central processing unit hardware within minutes,
reducing infrastructure costs and enabling broader accessibility in developing regions where
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diabetes prevalence continues rising. Furthermore, the interpretability of Random Forest
decision paths and explicit nature of Histogram of Oriented Gradients features facilitate clinical
validation and regulatory approval processes.

Future research should explore integration of ensemble methods combining multiple
feature extraction techniques to capture complementary visual patterns. Investigation of cost-
sensitive learning approaches could address class imbalance for severe diabetic retinopathy
stages that constitute clinical priorities. Validation on diverse datasets encompassing multiple
ethnicities and imaging protocols would establish generalization capabilities essential for real-
world deployment across heterogeneous clinical environments.
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