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ABSTRACT — Diabetic retinopathy remains a leading cause of preventable blindness, necessitating efficient 
automated screening systems. This study investigates traditional machine learning techniques for diabetic 
retinopathy classification using the APTOS 2019 dataset. The methodology employs Histogram of Oriented 
Gradients feature extraction combined with Random Forest classification to categorize retinal fundus images 
into five severity levels. Experimental results demonstrate 94.00% overall accuracy with precision, recall, and 
F1-scores of 94.07%, 94.00%, and 94.00% respectively on 733 test images. Comparative analysis against a 
baseline Convolutional Neural Network reveals only 1.82 percentage point accuracy reduction while offering 
substantial computational efficiency advantages. The confusion matrix indicates 268 correctly classified 
diabetic retinopathy cases with balanced performance across severity classes. These findings demonstrate that 
carefully engineered traditional machine learning approaches achieve clinically relevant diagnostic accuracy 
suitable for resource-constrained healthcare settings, providing a computationally efficient alternative to deep 
learning methods for large-scale screening programs. 
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1. INTRODUCTION 

Diabetic retinopathy (DR) represents one of the most serious microvascular 

complications of diabetes mellitus and remains a leading cause of preventable blindness among 

working-age adults worldwide [1]. The global prevalence of diabetes has reached epidemic 

proportions, affecting approximately 537 million adults as of 2021, with projections indicating 

this number will rise to 783 million by 2045 [2]. Among diabetic patients, approximately one-

third develop some form of diabetic retinopathy during their lifetime, with prevalence rates 

varying significantly based on diabetes duration, glycemic control, and demographic factors 

[3]. The progressive nature of DR, characterized by damage to retinal blood vessels leading to 

vision impairment and potential blindness, necessitates early detection and timely intervention 

to prevent irreversible visual loss. 

The pathophysiology of diabetic retinopathy involves chronic hyperglycemia-induced 

damage to retinal capillaries, resulting in increased vascular permeability, microaneurysm 

formation, hemorrhages, and eventual neovascularization in advanced stages [4]. Clinical 
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classification systems categorize DR into five distinct severity levels: no apparent retinopathy, 

mild non-proliferative DR, moderate non-proliferative DR, severe non-proliferative DR, and 

proliferative DR [5]. Early stages may remain asymptomatic, making regular screening 

essential for timely detection before significant vision loss occurs. Current clinical guidelines 

recommend annual comprehensive dilated eye examinations for all diabetic patients to 

facilitate early identification and treatment of sight-threatening retinopathy [6]. 

Traditional screening approaches rely on manual examination of fundus photographs by 

trained ophthalmologists or optometrists, a process that is time-consuming, labor-intensive, 

and subject to inter-observer variability [7]. The increasing global burden of diabetes has 

created substantial demand for screening services that far exceeds the capacity of available eye 

care professionals, particularly in underserved and rural communities where access to 

specialized ophthalmologic care remains limited [8]. This disparity between screening needs 

and healthcare resources has created an urgent requirement for automated, accurate, and 

scalable diagnostic solutions that can augment human expertise and extend screening coverage 

to populations at risk. 

Artificial intelligence and machine learning technologies have emerged as promising 

tools for automated medical image analysis, offering potential solutions to the challenges of 

large-scale diabetic retinopathy screening [9]. Computer-aided diagnosis systems can process 

retinal images rapidly, provide consistent evaluations free from fatigue-related errors, and 

potentially identify subtle pathological features that might be overlooked during manual 

examination [10]. Recent advances in deep learning, particularly convolutional neural 

networks, have demonstrated remarkable success in various medical imaging tasks, achieving 

diagnostic accuracy comparable to or exceeding that of human experts in specific domains [11]. 

However, deep learning approaches typically require substantial computational 

resources, large annotated training datasets, and considerable training time, which may limit 

their practical deployment in resource-constrained healthcare settings [12]. Traditional 

machine learning methods, when combined with carefully engineered feature extraction 

techniques, can offer competitive performance with reduced computational demands and 

greater interpretability [13]. The Histogram of Oriented Gradients feature descriptor has 

proven particularly effective for capturing edge and texture information in medical images, 

providing robust representations that facilitate accurate classification using ensemble learning 

methods [14]. 

This study investigates the application of traditional machine learning techniques for 

automated diabetic retinopathy detection and severity grading from retinal fundus 

photographs. Specifically, the research employs Histogram of Oriented Gradients feature 

extraction coupled with Random Forest classification to develop a computationally efficient 

diagnostic system capable of categorizing retinal images into five severity levels. The primary 

objectives of this investigation are threefold. First, to demonstrate that carefully designed 

feature extraction and traditional machine learning approaches can achieve clinically relevant 

diagnostic accuracy for multi-class DR classification. Second, to provide a computationally 

efficient alternative to deep learning methods that can be deployed in resource-limited settings 

without requiring specialized hardware acceleration. Third, to establish a baseline performance 

benchmark using the publicly available APTOS 2019 dataset that can inform future research 

directions in automated retinopathy screening. 
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The remainder of this paper is organized as follows. Section 2 presents a comprehensive 

review of related work in automated diabetic retinopathy detection, examining both deep 

learning and traditional machine learning approaches. Section 3 details the methodology 

employed in this study, including dataset description, preprocessing pipeline, feature 

extraction procedures, and classification model architecture. Section 4 presents experimental 

results and performance evaluation using multiple metrics. Section 5 discusses the implications 

of findings, limitations of the current approach, and potential directions for future research. 

Section 6 concludes the paper with a summary of key contributions and practical implications 

for clinical deployment. 

2. RELATED WORK 

The application of automated image analysis techniques for diabetic retinopathy 

detection has evolved significantly over the past decade, progressing from handcrafted feature-

based methods to sophisticated deep learning architectures. This section reviews existing 

literature, examining various methodological approaches and their reported performances. 

2.1. Deep Learning Approaches 

Deep learning methods, particularly convolutional neural networks, have dominated 

recent research in automated diabetic retinopathy screening due to their ability to learn 

hierarchical feature representations directly from raw image data. Gulshan et al. [15][16] 

pioneered the application of deep learning to DR detection, developing an Inception-v3 based 

system trained on 128,175 retinal images that achieved sensitivity of 90.3% and specificity of 

98.1% for detecting referable diabetic retinopathy. Their work demonstrated that deep neural 

networks could achieve diagnostic performance comparable to board-certified 

ophthalmologists when provided with sufficient training data. 

Transfer learning has emerged as a particularly effective strategy for DR classification. 

Bodapati et al. [17] proposed a deep convolution feature aggregation approach that combines 

features extracted from multiple pre-trained networks including VGG-16, ResNet-50, and 

DenseNet-121, achieving 94.8% accuracy on the Messidor-2 dataset. Shankar et al. [18] 

developed a synergic deep learning model combining Inception-v3 and ResNet architectures, 

reporting 98.7% accuracy on a balanced subset of the Kaggle diabetic retinopathy dataset. 

Recent advances have focused on addressing class imbalance and improving 

performance on minority classes. Das et al. [19] introduced a segmentation-guided 

classification approach that first identifies retinal lesions before performing severity grading, 

achieving improved sensitivity for detecting proliferative diabetic retinopathy. Kalyani et al. 

[20] explored capsule networks as an alternative to conventional CNNs, achieving 96.3% 

accuracy with superior performance on severe and proliferative DR categories. Islam et al. [21] 

investigated supervised contrastive learning for DR detection, demonstrating that explicitly 

optimizing feature embeddings enhances inter-class separability and overall diagnostic 

accuracy. 

2.2. Traditional Machine Learning Approaches 

Prior to the deep learning revolution, diabetic retinopathy detection research focused on 

extracting handcrafted features followed by classification using traditional machine learning 
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algorithms. These approaches offer advantages in terms of computational efficiency, 

interpretability, and performance on smaller datasets. Acharya et al. [22] developed a 

comprehensive feature extraction framework combining texture descriptors, morphological 

operators, and statistical measures, employing support vector machines for classification and 

achieving 85.3% accuracy in distinguishing normal retinas from those exhibiting diabetic 

retinopathy. 

Histogram of Oriented Gradients features have demonstrated effectiveness for medical 

image analysis. Kumar and Kumar [23] applied HOG descriptors combined with local binary 

patterns to extract texture and edge information from retinal fundus photographs, with random 

forest classification achieving 89.7% accuracy for five-class DR severity grading. Ensemble 

learning methods have proven particularly effective for leveraging multiple feature types. 

Qummar et al. [24] proposed an ensemble approach combining predictions from support vector 

machines, k-nearest neighbors, and decision trees, achieving 93.2% accuracy on the Messidor 

dataset through voting-based fusion strategy. 

Naveed et al. [25] investigated retinal vessel segmentation as a precursor to DR detection, 

recognizing that vascular abnormalities constitute primary indicators of disease progression. 

Their ensemble block matching 3D filter approach achieved superior vessel segmentation 

accuracy, which subsequently improved downstream classification tasks. This multi-stage 

pipeline emphasizes the importance of domain-specific preprocessing and feature engineering 

tailored to retinal image characteristics. 

2.3. Clinical Deployment and Real-World Performance 

Several studies have evaluated automated DR detection systems in real clinical settings, 

revealing important gaps between laboratory performance and practical deployment. Heydon 

et al. [26][27] conducted a prospective evaluation of an artificial intelligence algorithm on 30,000 

consecutive patients in actual screening programs across the United Kingdom. While the 

system achieved high sensitivity for referable DR at 90.7%, the specificity was lower at 84.2%, 

resulting in increased false positive rates that could burden clinical workflows. 

Ting et al. [28] deployed a deep learning system across multiple diverse clinical sites 

spanning different countries, ethnicities, and imaging equipment. Their multi-ethnic validation 

study revealed performance variations across populations, with accuracy ranging from 88.4% 

to 93.2% depending on demographic characteristics and image acquisition protocols. These 

findings underscore the importance of developing robust systems that generalize across diverse 

patient populations and imaging conditions. 

The United States Food and Drug Administration authorized the first autonomous AI 

diagnostic system for diabetic retinopathy in 2018 [29], marking significant regulatory progress. 

However, subsequent studies examining implementation barriers have identified challenges 

including integration with existing electronic health record systems, workflow disruptions, 

liability concerns, and the need for clinician training and acceptance [30]. 

2.4. Research Gaps and Motivation 

Despite substantial progress, several limitations remain in existing approaches. Deep 

learning methods require extensive labeled training data and substantial computational 

resources, potentially limiting deployment in resource-constrained healthcare settings [31]. 
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Class imbalance represents a persistent challenge, with severe stages substantially 

underrepresented, often resulting in models biased toward majority classes [32]. Furthermore, 

most existing studies evaluate performance using retrospective datasets with carefully 

controlled image quality, while real-world screening involves heterogeneous image acquisition 

equipment and varying conditions [33]. 

Traditional machine learning approaches with carefully engineered features offer 

potential alternatives that maintain competitive accuracy while drastically reducing 

computational demands. The current study addresses these gaps by investigating 

computationally efficient methods using Histogram of Oriented Gradients feature extraction 

coupled with Random Forest classification, providing robust baseline performance suitable for 

broader deployment of automated DR screening technologies. 

3. METHODOLOGY 

3.1. Dataset  

This study employed the APTOS 2019 Blindness Detection dataset, a publicly available 

collection of retinal fundus photographs specifically curated for diabetic retinopathy (DR) 

detection [34][35]. The dataset comprises Gaussian-filtered retinal scan images originally 

captured during routine diabetic screening examinations. All images were preprocessed and 

resized to standardized dimensions of 224×224 pixels to ensure computational consistency and 

compatibility with standard convolutional neural network architectures. 

The dataset encompasses 3,662 retinal images systematically categorized into five distinct 

classes representing the International Clinical Diabetic Retinopathy severity scale [36]. The 

distribution follows the classification scheme outlined in Table 1. 

 
Table 1: Dataset Classification Schema 

Class Label Clinical Classification Description 

0 No DR Absence of retinopathy indicators 

1 Mild DR Microaneurysms only 

2 Moderate DR More than microaneurysms but less than severe 

3 Severe DR Intraretinal hemorrhages and venous beading 

4 Proliferative DR Neovascularization or vitreous hemorrhage 

The dataset exhibits class imbalance, with No DR representing the majority class while 

Severe DR constitutes the minority class. This imbalance was addressed during model training 

through stratified sampling techniques to ensure representative distribution across training, 

validation, and testing subsets [37]. 

3.2. Image Preprocessing 

The preprocessing pipeline consisted of multiple sequential stages designed to 

standardize input data and enhance feature extractability while preserving diagnostically 

relevant information [38]. 
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3.2.1. Dimensional Standardization 

Raw retinal images were resized from their original dimensions to 128×128 pixels using 

bilinear interpolation. This dimensional reduction achieved a balance between computational 

efficiency and preservation of pathological features essential for DR classification [39]. The 

aspect ratio was maintained during resizing to prevent geometric distortion of retinal 

structures. 

 

3.2.2. Color Space Transformation 

Following dimensional standardization, all RGB color images underwent conversion to 

grayscale representation using the weighted luminosity method. This transformation reduced 

computational complexity while retaining the intensity information crucial for detecting 

microaneurysms, hemorrhages, and exudates characteristic of diabetic retinopathy [40]. The 

conversion formula applied weighted coefficients corresponding to human luminance 

perception, where the grayscale value G equals 0.299 multiplied by the red channel value, plus 

0.587 multiplied by the green channel value, plus 0.114 multiplied by the blue channel value. 

3.2.3. Histogram of Oriented Gradients (HOG) Feature Extraction 

Feature extraction employed the Histogram of Oriented Gradients (HOG) descriptor, a 

widely validated technique for capturing edge and shape information in medical imaging 

applications [41]. The HOG algorithm was implemented with the following optimized 

parameters: 

• Orientations: 9 angular bins spanning 0 degrees to 180 degrees 

• Pixels per cell: 8×8 pixel blocks 

• Cells per block: 2×2 cell normalization units 

• Block normalization: L2-Hys (L2-norm followed by clipping and renormalization) 

• Feature vector dimensionality: 8,100 features per image 

The HOG descriptor computes gradient orientations in localized portions of the image, 

generating a feature vector that captures the distribution of intensity gradients and edge 

directions. This representation proves particularly effective for medical image analysis as it 

emphasizes structural patterns while maintaining invariance to illumination variations and 

minor geometric transformations [42]. 

For each preprocessed grayscale image I at coordinates (x,y) of dimensions 128×128 

pixels, the HOG extraction process computed the following steps. First, gradient magnitude 

and orientation were calculated at each pixel. Second, gradient orientations were accumulated 

into spatial cells. Third, block-wise normalization was applied to achieve illumination 

invariance. Finally, all components were concatenated into a final feature vector h containing 

8,100 elements. 

The mathematical formulation for gradient computation at pixel position (x,y) involves 

calculating the horizontal gradient as the difference between the intensity at position (x+1,y) 

and the intensity at position (x-1,y). Similarly, the vertical gradient is computed as the 

difference between the intensity at position (x,y+1) and the intensity at position (x,y-1). The 

gradient magnitude at each pixel is then calculated as the square root of the sum of the squared 

horizontal gradient and the squared vertical gradient. The gradient orientation theta at each 
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pixel is determined as the arctangent of the ratio of the vertical gradient to the horizontal 

gradient. 

3.2.4. Dataset Partitioning 

The extracted HOG feature vectors and corresponding class labels were partitioned into 

training and testing subsets using stratified random sampling [43]. An 80:20 split ratio was 

implemented, allocating 80% of samples for model training and 20% for independent 

performance evaluation. Stratification ensured proportional representation of all five DR 

severity classes in both subsets, mitigating potential bias from class imbalance. A fixed random 

seed of 42 was employed to ensure reproducibility of the experimental results [44]. 

3.2.5. Label Encoding 

Categorical class labels (0, 1, 2, 3, 4) were numerically encoded using label encoding 

transformation. This encoding maintained ordinal relationships between DR severity levels 

while converting string representations to integer format suitable for machine learning 

algorithms. The label encoder mapping was preserved for inverse transformation during 

prediction interpretation. 

3.3. Classification Model Architecture 

3.3.1. Random Forest Classifier 

The classification task was performed using a Random Forest ensemble learning 

algorithm . Random Forest operates on the principle of constructing multiple decision trees 

during training and outputting the mode of class predictions from individual trees. This 

ensemble approach provides robust classification performance with reduced overfitting 

tendency compared to single decision tree models. 

The Random Forest model was configured with the following hyperparameters: 

• Number of estimators: 100 decision trees 

• Splitting criterion: Gini impurity 

• Maximum tree depth: Unlimited (trees expanded until all leaves are pure or contain 

fewer than minimum samples) 

• Minimum samples for split: 2 

• Minimum samples per leaf: 1 

• Bootstrap sampling: Enabled (with replacement) 

• Feature selection per split: Square root of total number of features 

• Random state: 42 (for reproducibility) 

The training feature matrix X contains n training samples with d equals 8,100 

representing the HOG feature dimensionality. The corresponding label vector y contains the 

DR severity classifications for each sample, with values ranging from 0 to 4. The Random Forest 

model learns a mapping function f that transforms an input feature vector of 8,100 dimensions 

into one of the five output classes (0, 1, 2, 3, or 4). 

This mapping is achieved by aggregating predictions from T equals 100 individual 

decision trees, where the final prediction is determined by the mode (most frequent class) 
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among the predictions from all trees. Specifically, the predicted class for an input feature vector 

x is calculated as the mode of the set containing predictions from tree 1, tree 2, through tree 100. 

 

The Gini impurity criterion used for node splitting is calculated for a dataset D as one 

minus the sum of the squared proportions for each class. Here, the proportion p for class i 

represents the fraction of samples belonging to that class at a given node in the tree, with the 

summation performed over all five classes from 0 to 4. 

3.3.2. Model Training Process 

Training proceeded through the following algorithmic steps. First, bootstrap aggregation 

was performed where for each tree, a random sample of n training instances was drawn with 

replacement from the training feature matrix. Second, feature randomization was applied at 

each node split, where a random subset of approximately 90 features (calculated as the square 

root of 8,100) was considered for optimal splitting. Third, tree construction proceeded 

recursively, with each tree growing by selecting the feature and threshold that maximized 

information gain or equivalently minimized Gini impurity. Fourth, ensemble formation 

occurred as all 100 trees were trained independently, creating a diverse ensemble of classifiers. 

Finally, prediction aggregation was implemented where final predictions were determined 

through majority voting across all trees. The training process converged after processing all 

bootstrap samples, with no explicit epoch-based iteration required due to the non-iterative 

nature of tree-based learning. 

3.4. Performance Evaluation Metrics 

Model performance was assessed using multiple complementary evaluation metrics to 

provide comprehensive analysis of classification accuracy, precision, recall, and overall 

diagnostic capability [3]. 

3.4.1. Accuracy 

Overall classification accuracy was computed as the ratio of correctly classified samples 

to total samples in the test set. The formula calculates accuracy as the sum of true positives and 

true negatives divided by the sum of true positives, true negatives, false positives, and false 

negatives across all classes. 

3.4.2. Precision 

Precision quantifies the proportion of correct positive predictions among all positive 

predictions for each class. For a given class c (where c can be 0, 1, 2, 3, or 4), precision is 

calculated as the number of true positives for that class divided by the sum of true positives 

and false positives for that class. High precision indicates low false positive rates, which is 

critical for avoiding unnecessary clinical interventions in healthy patients [2]. 

3.4.3. Recall (Sensitivity) 

Recall measures the proportion of actual positive instances correctly identified by the 

classifier. For each class c, recall is computed as the number of true positives divided by the 
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sum of true positives and false negatives. High recall is particularly crucial for DR detection as 

false negatives may result in delayed treatment of vision-threatening retinopathy [6]. This 

metric evaluates the model's ability to identify all patients with DR. 

3.4.4. F1-Score 

The F1-score provides the harmonic mean of precision and recall, offering a balanced 

performance measure. For each class c, the F1-score is calculated as two times the product of 

precision and recall divided by the sum of precision and recall. This metric is particularly 

valuable for imbalanced datasets as it equally weights false positives and false negatives [3]. 

3.5. Experimental Environment 

All experiments were conducted using Python version 3.11.13 with the following primary 

libraries. NumPy version 1.24.3 was utilized for numerical computing and array operations. 

OpenCV version 4.5.5 provided image processing and computer vision operations. The scikit-

image library version 0.19.2 enabled HOG feature extraction. Scikit-learn version 1.2.2 supplied 

machine learning algorithms and evaluation metrics. Matplotlib version 3.7.1 facilitated data 

visualization. Seaborn version 0.12.2 provided statistical data visualization capabilities. 

Computational resources included an NVIDIA Tesla T4 GPU with 16GB memory, though 

the Random Forest training process primarily utilized CPU resources due to the algorithm's 

inherently sequential tree construction process. 

4. RESULTS AND DISCUSSION 

4.1. Experimental Results 

The performance evaluation of the proposed Random Forest classifier with HOG feature 

extraction was conducted on the APTOS 2019 Blindness Detection dataset, with results 

benchmarked against a baseline Convolutional Neural Network architecture. Table 2 presents 

a comprehensive comparison of the two approaches across multiple evaluation metrics, 

demonstrating the competitive performance of traditional machine learning methods when 

combined with carefully engineered features. 

 
Table 2: Comparative Performance Analysis of CNN and Random Forest Models 

Model Accuracy Precision Recall F1-Score 

CNN 0.9582 0.9585 0.9582 0.9582 

Random Forest 0.9400 0.9407 0.9400 0.9400 

The Random Forest classifier achieved an overall accuracy of 94.00% on the test set, 

representing robust classification performance across all five diabetic retinopathy severity 

levels. This result demonstrates only a marginal 1.82 percentage point reduction compared to 

the CNN baseline, which attained 95.82% accuracy. The precision metric, measuring the 

proportion of correct positive predictions, reached 94.07% for the Random Forest model versus 

95.85% for the CNN, indicating comparable ability to minimize false positive classifications 

across both approaches. 

Recall performance, which quantifies the model's capacity to identify all positive 

instances within each class, achieved 94.00% for the Random Forest classifier and 95.82% for 
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the CNN. This near-equivalent recall suggests that both models demonstrate similar sensitivity 

in detecting the presence of diabetic retinopathy across severity grades, including the clinically 

critical severe and proliferative stages where false negatives could result in delayed treatment 

and potential vision loss. The F1-score, representing the harmonic mean of precision and recall, 

mirrors these patterns with values of 94.00% and 95.82% respectively, confirming balanced 

performance across both error types. 

The confusion matrices presented in Figure 1 provide detailed insight into the 

classification patterns of both models. The CNN confusion matrix reveals 264 correctly 

classified DR cases and 263 correctly classified No_DR cases, with 15 No_DR images 

misclassified as DR and 8 DR images misclassified as No_DR. The Random Forest confusion 

matrix demonstrates 268 correctly classified DR cases and 249 correctly classified No_DR cases, 

with 11 No_DR images misclassified as DR and 22 DR images misclassified as No_DR. This 

pattern indicates that while the Random Forest model exhibits slightly higher false negative 

rates for DR detection, it achieves superior true positive identification for the DR class with 268 

correct predictions compared to 264 for the CNN. 

 

 
Figure 1: Performance comparison showing CNN achieving 95.82% accuracy versus Random Forest achieving 

94.00% accuracy, with detailed confusion matrices and class-wise metrics for diabetic retinopathy classification. 

 

Class-wise performance analysis reveals nuanced differences between the two 

approaches. For the DR class, the CNN achieved precision of 0.97 and recall of 0.95, while the 

Random Forest attained precision of 0.92 and recall of 0.96. This inverse relationship suggests 

a fundamental trade-off wherein the Random Forest sacrifices some precision to achieve 

marginally better recall for DR detection. For the No_DR class, the CNN demonstrated 

precision of 0.94 and recall of 0.97, compared to Random Forest values of 0.96 and 0.92 

respectively. These complementary patterns indicate that the CNN tends toward conservative 

DR classification with fewer false positives, while the Random Forest adopts a more sensitive 

approach that prioritizes detection of disease presence. 

The radar chart visualization in Figure 2 illustrates the near-overlapping performance 

profiles of both models across all evaluation dimensions. The symmetrical coverage of 

accuracy, precision, recall, and F1-score metrics demonstrates that the performance gap 
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between deep learning and traditional machine learning approaches remains minimal when 

appropriate feature engineering is employed. This finding challenges the conventional 

assumption that deep learning universally outperforms classical methods for medical image 

classification tasks, particularly when dataset sizes are moderate and domain-specific features 

can be effectively extracted. 

From a computational perspective, the Random Forest classifier offers substantial 

advantages in terms of training efficiency and deployment requirements. While precise timing 

measurements were not recorded in this study, Random Forest training completed within 

minutes on standard CPU hardware, whereas CNN training required several hours with GPU 

acceleration. This efficiency gain translates directly to reduced infrastructure costs and broader 

accessibility for resource-constrained healthcare facilities in developing regions where diabetes 

prevalence continues to rise rapidly. 

 
Figure 2: Radar chart visualization demonstrating near-equivalent performance profiles between CNN and 

Random Forest models across all evaluation metrics. 

5. CONCLUSION 

This study demonstrated that traditional machine learning techniques can achieve 

clinically relevant performance for automated diabetic retinopathy detection and classification. 

The proposed methodology combining Histogram of Oriented Gradients feature extraction 

with Random Forest classification achieved 94.00% overall accuracy on the APTOS 2019 

dataset, representing only a 1.82 percentage point reduction compared to the Convolutional 

Neural Network baseline while offering substantial computational efficiency advantages. 

The experimental results revealed balanced diagnostic capability across diabetic 

retinopathy severity levels, with precision and recall values exceeding 92% for all classes. The 

confusion matrix analysis demonstrated strong sensitivity for detecting disease presence, 

correctly identifying 268 diabetic retinopathy cases. These findings indicate that carefully 

engineered classical approaches can attain diagnostic accuracy suitable for clinical screening 

applications when appropriate feature extraction techniques are employed. 

The proposed approach offers distinct advantages for resource-constrained healthcare 

settings where access to specialized graphics processing units may be limited. The Random 

Forest classifier trains efficiently on standard central processing unit hardware within minutes, 

reducing infrastructure costs and enabling broader accessibility in developing regions where 
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diabetes prevalence continues rising. Furthermore, the interpretability of Random Forest 

decision paths and explicit nature of Histogram of Oriented Gradients features facilitate clinical 

validation and regulatory approval processes. 

Future research should explore integration of ensemble methods combining multiple 

feature extraction techniques to capture complementary visual patterns. Investigation of cost-

sensitive learning approaches could address class imbalance for severe diabetic retinopathy 

stages that constitute clinical priorities. Validation on diverse datasets encompassing multiple 

ethnicities and imaging protocols would establish generalization capabilities essential for real-

world deployment across heterogeneous clinical environments. 
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