
IJAIA

Volume 1 | Number 2 | December 2025 | Pages 1-11

* Corresponding author DOI: https://doi.org/

International Journal of Artificial Intelligence Applications

ISSN (online): 3105-3572

Homepage: ijaia.com

Implementing AI-Based Code Review Automation: A Case

Study in Academic Software Development

Omar Isam AL Mrayat 1*, Dyala Ibrahim2, Malik jawarneh3

1Department of Software Engineering, Amman Arab University,
11953 Amman, Jordan, Email : o.mrayat@aau.edu.jo

 2Department of Cyber Security, Amman Arab University,

11953, Amman, Jordan, Email : d.ibrahim@aau.edu.jo
3Department of computer science, Amman Arab University,

11953 Amman, Jordan Email : m.jawarneh@aau.edu.jo

Received: 08, 2025 Revised: 10, 2025 Accepted: 11, 2025 Available online: 12, 2025

ABSTRACT — Code reviews have always been a necessary evil in software development but one that was
very time consuming. Nevertheless, it is much tougher for educators in education due to evaluating codes for
hundreds of students. This paper describes the design and deployment of an AI-assisted code review system
in a university computer science department. The system uses the transformer and GPT-4 models for aiding
the human graders in assessing programming assignments of various university courses. The system checks
the code for syntax and semantic errors, design and implementation patterns, and compliance with coding
standards. In a six-month study run of involving 150 student projects, the automated system detected around
87% of code quality issues needing human inspection. It cut down the time taken by educators to review code
by approximately 62%, with the same grade of feedback quality. Based on our experience, AI for code review
has exciting potentials but also currently has limitations in an academic environment. It is good at spotting
common mistakes as well as style issues, but not so good at picking up on context-sensitive design decisions
or pedagogical issues. The study provides evidence of AI-supported code review for the academic field and
suggestions for educators wishing to set up a similar system.

Keywords — Artificial Intelligence; Code Review Automation; GPT-4; Software Engineering Education;
Large Language Models; Automated Assessment; Educational Technology.

1. INTRODUCTION

All code should be reviewed by developers in software engineering practices in order to

detect bugs, enforce coding standards, and improve quality. The manual procedure is tiring

and takes a lot of time, at least in the universities where professors have heaps of stacks of

assignments to read through. Do not forget the humans' inconsistency. Recent developments

in AI, especially large-scale language models and transformer architectures create interesting

new possibilities for automating at least parts of code review [1]. Recent AI-powered

frameworks have demonstrated effectiveness in enhancing bug detection and code reliability

through automated testing [2]. AI is increasingly being introduced in code review in

universities and companies as well. Research shows that these tools can accurately identify code

smells, security vulnerabilities, styling issues, among others. However, not much investigation

has occurred of these artefacts specifically within educational settings. The teaching contexts

arise several challenges – students of vastly different expertise, providing some feedback the

learner can actually use, trying to keep human in the loop for pedagogical reasons, etc. This

project highlights our experience with using AI-based code review system at university to

https://doi.org/
mailto:o.mrayat@aau.edu.jo%20
mailto:d.ibrahim@aau.edu.jo%20%20
mailto:m.jawarneh@aau.edu.jo

2 International Journal of Artificial Intelligence Applications. Volume 1 | Number 1| December 2025

tackle these issues. We adapted recent large language models work, primarily focused on GPT-

4, to fit the requirements for academic code grading [3].

The integration of AI techniques is done in our system. Thus, it generates a comment

using natural language processing. Moreover, it recognizes patterns using machine learning.

Also, it uses the expert system which is rule-based for checking constraints. Our contributions

involve: first, we build an AI-based code review system for academic use. Second, we evaluated

the system over several programming courses with students with different programming skills.

Third, we analyzed the impact on instructor effort and the quality of feedback. Fourth, we set

the boundaries of the current deep learning AI model’s capability for academic code reviews.

Fifth, we provide actionable recommendations for educators and institutions planning such a

system [4].

2. RELATED WORK

2.1. Automated Code Review Systems

Automated code review has come a long way over the last ten years or so. Traditional

static analysis tools have gotten much smarter with machine learning capabilities for detecting

complex patterns and potential bugs. Tufano and colleagues [1] showed that deep learning

models can manage various code review tasks pretty well, including generating comments and

assessing quality. Their analysis was comprehensive and revealed both what works and what

does not in current approaches, making it clear we need to keep pushing forward in this area.

Vijayvargiya et al. [3] described Auto Commenter, an LLM-based system Google

deployed for four programming languages. They proved you can do this at massive scale while

keeping users happy. Similarly, AI-enhanced code review systems [5, 6, 7] and automated

comment generation tools [8] demonstrated that systems built on GPT-4 can provide useful

automated review comments across diverse types of code repositories. AI-powered testing

frameworks [2] have shown particular promise in detecting defects through machine learning

and anomaly detection techniques.

Yin et al. [4] suggested using program structure information through graph

representations to make code review more effective. Their PDG2Seq algorithm turns program

dependency graphs into sequences while keeping structural and semantic information intact,

showing better results than approaches that just look at sequences.

2.2. AI and Large Language Models in Software Engineering

Turner [9] introduceed transformer architectures and their mathematical foundations.

Islam et al. [10] conducted an extensive survey of transformer applications in deep learning

tasks, highlighting their ability to model contextual relationships in sequential data. Recent

research examines both the promises and perils of transformer-based models for software

engineering [11].

The transformer architecture introduced by Vaswani et al. [12] forms the foundation of

modern language models. GPT-4's technical capabilities [13] have been extensively evaluated

on programming tasks, demonstrating strong performance on code generation challenges [14]

International Journal of Artificial Intelligence Applications. Volume1 | Number 2 | December 2025 3

and systematic code evaluation [15], though requiring human validation for production use

[16].

2.3. Software Engineering Education and AI

More attention is recently being paid to artificial intelligence tools being integrated into

software engineering education. Recent research has explored the potential applications of

generative AI to enhance various aspects of computer science education (for example,

personalized learning and automated assessment) [17, 18, 19]. Concerns about academic

integrity and the pedagogical implications of AI help remain live issues.

According to Syeed et al. [20], undertaking outcome-based education is advantageous

due to the realization of the industry-driven subject software engineering in practice. Project-

based learning approaches [21] and integrated frameworks for educational software

development [22] combined with digital learning in higher education [23] and DevOps

integration into curricula [24, 25] support modern software engineering education. Petrovska

et al. [17] conducted a competency-based assessment of generative AI in software development

educational activities. Recent workshops [26] and studies on critical thinking skills [27]

emphasize human-AI collaboration in curriculum development [28], with universities building

capacity through open source programs [29].

3. METHODOLOGY

3.1. System Architecture

Our AI code review system has been designed to be modular and hence divided into four

important components which are: The Code Analysis Engine, AI Inference Module, Feedback

Generation System, Review Management Interface. The Code Analysis Engine conducts

preliminary static analysis incorporating standard tools to extract metrics, identify syntax

errors, flag common anti-patterns, and assess code quality attributes [30, 31]. Deep learning and

object-oriented metrics [32] inform our analysis engine design. The initial iteration of this code,

along with its generated results, is structured in a way that it can be supplied to AI models for

verification and correction of complex semantic errors in the code. A basic level check will now

occur automatically in the system for any student code. We optimized custom prompts for code

review in an educational setting by using OpenAI API to tap into GPT-4 using AI Inference

Module. We built different prompting templates for programming languages like python, java

and others and similar templating assignment to do with algorithms, data structure, web dev.

The API in the module makes batch calls, optimizes token pattern, while attempts to maintain

context in file's chunk across file chunk. The system for generating feedback combines the

findings from static analysis and AI inferences to create together a code review comment. The

comments filtering module removes repetitive comments, highlights problems, and formats

comments to improve pedagogical use. We incorporated educational best practices like

constructive tone, specific examples, actional recommendations, and more. The Review

Management Interface provides instructor tools to define review criteria, counter-check review

performance, validate feedback from AI, and export results for further grading. The interface

enables teachers to reject the machine's suggestions, and the changes to the question generation

4 International Journal of Artificial Intelligence Applications. Volume 1 | Number 1| December 2025

system are documented in order to train it further. The system architecture and inter-

component data flow are shown in Figure 1.

Student Code Submission (.py, .java, .cpp)

↓

1. Code Analysis Engine
Static Analysis Tools: Pylint, Flake8, Checkstyle

Extracts: Syntax errors, style violations, code metrics

↓

2. AI Inference Module
GPT-4 API with Custom Educational Prompts

Analyzes: Logic errors, design patterns, best practices

↓

3. Feedback Generation System
Consolidates & prioritizes findings

Generates: Pedagogically-appropriate feedback comments

↓

4. Review Management Interface
Instructor Dashboard: Validate, modify, export reviews
Delivers feedback to students & captures improvements

Figure 1. System Architecture Overview

3.2. Implementation Details

The official Python library from OpenAI allows easy access to the GPT-4 model. Our

implementation considers efficient deep learning inference techniques [33]. The following are

the main dependencies we used (except standard python libraries) that are required to use

GPT-4. A complete system was developed utilizing python. The official Python library from

OpenAI allows easy access to the GPT-4 model. To break down your code for discovering static

errors we used Pylint and Flake8. The library Pandas Python Data have been used to parse

data. We have deployed all components on university servers after implementing all the

security features for keeping any student code safe from any misuse and also to prevent

plagiarism. A few parameter settings in GPT-4 were tried out by us to set definitions for our

system. We experimented with modifying the temperature setting and maximum tokens. We

tried using various prompt texts and saw which one looked to be the most effective. We

attempted different organization and grouping of our prompts in a variety of budgets. After

several tries, we were able to discover effective setups for the different situation types. A

temperature setting of 0.3 serves us well in consistently forcing GPT-4 to catch clear-cut

objective errors. Figure 2 compares the traditional manual review workflow with our AI-

assisted approach, highlighting the time savings and consistency improvements achieved

through automation of routine checks while maintaining human oversight for complex

decisions.

International Journal of Artificial Intelligence Applications. Volume1 | Number 2 | December 2025 5

TRADITIONAL MANUAL AI-ASSISTED

Receive Code
⏱ 1 min

Automated Static Analysis
⏱ 10 sec

▼ ▼

Check Syntax
⏱ 3 min

GPT-4 AI Analysis
⏱ 30 sec

▼ ▼
Review Style
⏱ 4 min

Auto Feedback Generation
⏱ 5 sec

▼ ▼
Analyze Logic & Design

⏱ 6 min
Instructor Validation

⏱ 3 min

▼ ▼

Write Comments
⏱ 5 min

Additional Manual Review
⏱ 2 min

▼ ▼
Final Review & Grade

⏱ 3 min
Deliver Feedback

⏱ 30 sec

TOTAL: ~22 min
Slow & Variable

TOTAL: ~6 min

✓ 73% Faster & Consistent

Figure 2. Traditional vs. AI-Assisted Code Review Workflow

3.3. Data Collection and Experimental Setup

The investigation was conducted in a period of 6 months, namely Spring and Fall

semesters of 2024 in three computer science classes. The study sample comprised of 150

students. Across all the course assignments submitted, there were 450 assignments, many of

which were simple algorithms to multi-file projects. To comprehensively evaluate our

measures, we employ a combination of qualitative and quantitative techniques. We possess

quantitative metrics on one side. Conversely, there are qualitative assessments. Measures such

as detection accuracy (precision, recall, F1-score) for various issue types, review time reduction

and consistency measures. The qualitative analysis consists of an instructor survey, student

feedback analysis, and a case study of examples where recommendations differ from human

judgments. Manual review is required to ensure our evaluation's ground truth.

3.4. Ethical Considerations

The researchers received institutional review board approval and obtained informed

consent from all the students. We made it clear to students from the very beginning that AI-

assisted review would not take over grading or replace human review. Students could ask for

purely human review at any time. All code, grades and feedback data were anonymized for the

purpose of the research. We established strict data protection processes. We clearly mentioned

about being over trusting the system for example, humans were always the ones to create final

letter grades and make re-marking decisions. Furthermore, the students could

question/challenge feedback from human instructors. Students were informed that this AI

system is a software assistant that allows instructors to offer more.

6 International Journal of Artificial Intelligence Applications. Volume 1 | Number 1| December 2025

4. RESULTS

4.1. Detection Accuracy

The AI system is significantly capable of determining the usual kinds of code quality

problems. The detection accuracy for the distinct categories is shown in Table I. Detection rates

for syntax errors and style violations are the best (precision: 0.94, recall: 0.91) as they are driven

by high-coverage rules which are usually well-defined. Taking into consideration the high

precision of 0.78 and recall of 0.71, logic errors and algorithmic inefficiencies are more difficult.

Table 1: DETECTION ACCURACY BY ISSUE CATEGORY

Issue Category Precision Recall F1-Score

Syntax Errors 0.94 0.91 0.92

Style Violations 0.93 0.89 0.91

Missing Error Handling 0.86 0.84 0.85

Variable Naming Issues 0.91 0.87 0.89

Inefficient Loops 0.84 0.80 0.82

Logic Errors 0.78 0.71 0.74

Algorithmic Inefficiency 0.75 0.68 0.71

OOP Design Violations 0.69 0.65 0.67

The system demonstrated good classification performance, with an F1-score of 0.85 for

missing error handling, 0.89 for inappropriate variable names, and 0.82 for inefficient loop

constructs. In the case of object-oriented design principal violations, it showed a moderate

performance (F1-score: 0.67), as that would require a holistic understanding of the entire system

design. A comparison analysis revealed that the AI discovered about 87% of the things

identified by the expert reviewers. However, it also caught an additional 15% legitimate

problems that were not picked up by the human review.

4.2. Review Time Reduction

The instructor spent the following time on code review before and after AI Assisted code

review. Refer the Table II. The time allocated to code review experiences a sharp decline. The

faculty spent an average of 12 mins per assignment for the intro category and 25 mins per

assignment for the advanced category on code review in total time before the implementation.

On the contrary, that might use AI aided.

Table 2: REVIEW TIME COMPARISON (MINUTES PER ASSIGNMENT)

Course Level Manual Review AI-Assisted Time Saved Reduction

Introductory (CS101) 12.0 4.5 7.5 62%

Intermediate (CS201) 18.0 7.2 10.8 60%

Advanced (CS301) 25.0 9.5 15.5 62%

Simple Assignments 8.0 2.0 6.0 75%

Complex Projects 32.0 18.0 14.0 44%

According to the research, the time savings depend on the complexity of the contribution

and also functional requirements and the skills of the students. For example, instructor review

times were reduced 75% on average for assignments where the main problems were related to

syntax and style. That was the easiest of contributions. Reduction of review times was lesser

(40-45%) for projects requiring architecture scrutiny. The instructor still needs enough time to

International Journal of Artificial Intelligence Applications. Volume1 | Number 2 | December 2025 7

address the higher-level considerations for assessment. On the presenter end, although less

time was consumed, the nature of the feedback was the same or better. The AI system flagged

the issue in all the studies.

4.3. Feedback Quality and Consistency

The 150 student surveys revealed that the AI-assisted feedback received an overall

positive assessment. The ratings are summarized in Table III. The feedback was rated clear by

the students with a rating of 4.1. It was rated helpful at 3.9. Also, the feedback specificity was

rated 4.2. According to qualitative comments, the students liked the feedback because it was.

Table 3: STUDENT FEEDBACK RATINGS (5-POINT LIKERT SCALE)

Aspect Mean Score Std Dev Median

Clarity 4.1 0.7 4.0

Helpfulness 3.9 0.8 4.0

Specificity 4.2 0.6 4.0

Consistency 4.3 0.6 4.5

Timeliness 4.5 0.5 5.0

Overall Satisfaction 4.0 0.7 4.0

As analyzed for consistency, the feedback standard provided has been similar due to

feedback by AI. Meaning that similar errors had similar feedback, regardless of when submitted

and which TA assigned. This uniformity aids in standardizing consistency for large courses

that could have assorted styles will there be different TAs. However, some students were

opposed to the automation that took the human touch away. They wanted insight from their

mistakes and not just the usual automated message. Students prefer context-specific feedback

they think would benefit them more. Also, Promoted.

4.4. System Limitations and Failure Cases

The research uncovered system limitations that trendily cut across assignments: First,

domain or context-specific requirements that are not mentioned in code comments or

assignment hand-outs often tend to be out-of-scope as far as students are concerned and do not

get checked by the system. For instance, one of the assignments requires that the system design

follows the MVC pattern, and all the solutions followed that. The design was not vetted as it

was only referred to the class lectures. Even if a different student produced a solution that took

a different architecture, that also would have been a correct solution. However, it is imperative.

5. DISCUSSION

5.1. Practical Implications for Academic Institutions

As a result, institutions adopting generative AI for software practitioners [34] should

expect to incur implementation costs upfront and have ongoing costs for API usage, prompt

engineering, and system refinement. The transformation through AI agents [35] and the future

of AI-driven software engineering [36, 37, 38] suggest early adoption provides competitive

advantages. The deployment of AI-assisted code review in our setting was successful,

indicating that it is practical with low instructional resources for a new institute. The system

worked best when it was embedded in existing systems and workflows and did not replace a

8 International Journal of Artificial Intelligence Applications. Volume 1 | Number 1| December 2025

human reviewer completely. As a result, a school utilizing ChatGPT for real applications

should expect to incur implementation costs upfront and expect to have ongoing costs of using

the API plus time spent re-engineering prompts and reworking. Due to our experience, we

know repetitive feedback on simple issues can lead to enhanced learning. This means AI-

assisted review works best in a large intro course. For higher learning where the design and

architecture matter more, the AI can be a first-pass filter for which the instructor can be the

‘reviewer.’ The cost of the API for GPT-4 is about $0.15 per assignment, and so far, the cost-

benefit analysis indicated that we managed to recoup the costs through a reduction in grading

assistant hours from first semester. Schools must take into consideration both direct costs.

5.2. Pedagogical Considerations

It is equally possible that the over-reliance on automated marking will slightly impair the

effectiveness of certain types of learner activities, such as critical analysis and evaluation, if

students take the feedback [39]. Using AI to review code raises big questions and challenges

about what we want out of learning and its assessment authenticity. Our observations

demonstrate that automated feedback can help students acquire basic programming skills,

while it frees up the teacher for issues of concept and solution strategy. As our students got

familiar with the basics of programming, instant feedback on syntactic and stylistic errors

helped them understand the errors better and rectify them before showing the final submission.

To put it differently, students learn from mistakes and get a chance to resubmit their assignment

after correction. The current pedagogy of formative assessment and learning from one’s

mistakes was coordinated with this. It is equally possible that the over-reliance on automated

marking will slightly impair the effectiveness of certain types of learner activities, such as

critical analysis and evaluation, if students take the feedback.

5.3. Technical Insights on AI Model Performance

We also saw that prompt engineering played a key role in getting the best out of GPT-4

[40]. The model benefits from explicit role definitions and structured prompts. While

transformer models show promise across domains [41], their application to software

engineering requires domain-specific considerations [11]. The capabilities of the Model GPT-4

and its performance of the model were revealed in a study. To begin with, the model showed a

deep understanding of the syntax and semantics of several programming languages including

Python, Java and C++. As the model has been trained on a large set of public code repositories,

it can identify common patterns and anti-patterns in code. We also saw that prompt

engineering played a key role in getting the best out of GPT-4. The model will benefit from

being given an explicit definition of roles, according to our code.

6. RECOMMENDATIONS AND FUTURE WORK

Based on our experiences, we have several suggestions for teachers and educational

institutions that want to experiment with AI-assisted code-review. Start with the lessons and

have simple tasks before starting on the big projects. Dedicate some time to prompt

engineering: You do need to spend some time producing prompts for different courses,

assignment types, and learning goals. Always ensure humans participate in the loop. AI can be

used the direction of future research include development of educational code specialization

International Journal of Artificial Intelligence Applications. Volume1 | Number 2 | December 2025 9

models. Also training of models on code from student submissions and related learning

feedback (explanations, hints). This could utilize advances in research on end user program

repair. Reverse Engineering IDEs' Runtime Behavior through Their JVM Bytecode/Executable.

The goal is to reveal the operation of an IDE's mechanisms at runtime through taking its

bytecode or executable apart through static or dynamic means. Researching the extended

effects that methods have on students’ skills - Evidence based studies on the students’ learning

outcomes and programming skills.

7. CONCLUSION

The case study discussed here highlights feasibilities and practicalities of automation of

student code review using AI based system. The system was implemented as a pilot in

academic software development with 150 students from three different courses for six months.

According to the study, employing AI to review code cuts down time usage for during code-

reviewing by 62%. In addition, the responses from the instructors, students and the review of

responses of the system were positive.

The system was able to find 87% of the problems in the student code, comparable to recent

AI-powered frameworks for bug detection [2]. Also, its managed syntax errors, style errors,

and common logical errors well. However, it could not recognize problems associated with

context and design decisions. This means that the power of the human reviewer can be

combined with automation which has the ability to scale. Consistent feedback can thus be

provided on wrongly defined errors by AI.

Consequently, the teacher can concentrate more on advanced-dimension education

interactions and difficult evaluation. Likewise, the teacher must integrate human assessment

into the system to give classes on design and context issues. Issues related to sensitive situations

and equity are also managed by humans. AI provides a complementary function to the

reviewer’s human expertise. As AI continues to evolve, future systems will address more

complex challenges through multi-modal data and analysis of participant responses. Just like

that, AI contribution. Students and educators must also utilize smarter software, as software

engineers are doing so. Through this paper we hope to ignite more research in the area.

REFERENCES

[1] R. Tufano, O. Dabić, A. Mastropaolo, M. Ciniselli, and G. Bavota, "Code Review Automation:

Strengths and Weaknesses of the State of the Art," IEEE Trans. Softw. Eng., vol. 50, no. 2, pp. 338–

353, Feb. 2024. DOI: 10.1109/TSE.2023.3348172

[2] O. I. Al Mrayat, M. Jawarneh, D. Ibrahim, and A. Altrad, "AI-Powered Software Testing: A Novel

Framework for Enhancing Bug Detection and Code Reliability," Int. J. Intell. Syst. Appl. Eng., vol.

12, no. 23s, pp. 1871–, Sep. 2024. DOI: 10.17762/ijisae.v12i23S.7147

[3] M. Vijayvergiya et al., "AI-Assisted Assessment of Coding Practices in Modern Code Review," in

Proc. AIware '24, Porto de Galinhas, Brazil, Jul. 2024, pp. 1–9. DOI: 10.1145/3664646.3665664

[4] Y. Yin, Y. Zhao, Y. Sun, and C. Chen, "Automatic Code Review by Learning the Structure

Information of Code Graph," Sensors, vol. 23, no. 5, p. 2551, Feb. 2023. DOI: 10.3390/s23052551

[5] K. Ye, L. Zhou, and S. Huang, "Automated Code Review In Practice," arXiv preprint

arXiv:2412.18531, Dec. 2024.

10 International Journal of Artificial Intelligence Applications. Volume 1 | Number 1| December 2025

[6] D. Groeneveld et al., "AICodeReview: Advancing Code Quality with AI-Enhanced Reviews,"

SoftwareX, vol. 26, p. 101677, 2024. DOI: 10.1016/j.softx.2024.101677

[7] R. Li et al., "Resolving Code Review Comments with Machine Learning," in Proc. 46th Int. Conf.

Softw. Eng.: Softw. Eng. in Practice (ICSE-SEIP), Lisbon, Portugal, Apr. 2024. DOI:

10.1145/3639477.3639746

[8] Y. Li et al., "CodeDoctor: Multi-Category Code Review Comment Generation," Autom. Softw. Eng.,

vol. 32, no. 1, Feb. 2025. DOI: 10.1007/s10515-025-00491-y

[9] R. E. Turner, "An Introduction to Transformers," arXiv preprint arXiv:2304.10557, Feb. 2024.

[10] S. Islam et al., "A Comprehensive Survey on Applications of Transformers for Deep Learning

Tasks," Expert Syst. Appl., vol. 241, p. 122666, May 2024. DOI: 10.1016/j.eswa.2023.122666

[11] T. Zuo, H. Zhang, and M. Kim, "Promises and Perils of Using Transformer-Based Models for SE

Research," Neural Networks, vol. 182, p. 107067, Dec. 2024. DOI: 10.1016/j.neunet.2024.107067

[12] A. Vaswani et al., "Attention Is All You Need," in Proc. 31st Int. Conf. Neural Inf. Process. Syst.,

Red Hook, NY, USA, 2017, pp. 6000–6010.

[13] J. Achiam et al., "GPT-4 Technical Report," arXiv preprint arXiv:2303.08774, Mar. 2024.

[14] P. Vishnu, "Unveiling the Role of GPT-4 in Solving LeetCode Programming Problems," Comput.

Appl. Eng. Educ., vol. 33, no. 1, Jan. 2025. DOI: 10.1002/cae.22815

[15] C. Song and H. Lin, "A Systematic Evaluation of Large Language Models for Generating

Programming Code," Neural Networks, vol. 172, Mar. 2024. DOI: 10.1016/j.neunet.2024.106117

[16] R. Poldrack, "AI-Assisted Coding: Experiments with GPT-4," arXiv preprint arXiv:2304.13187, Apr.

2023.

[17] O. Petrovska, L. Clift, F. Moller, and R. Pearsall, "Incorporating Generative AI into Software

Development Education," in Proc. 8th Conf. Comput. Educ. Practice, pp. 37–40, 2024. DOI:

10.1145/3647649.3647651

[18] B. A. Becker et al., "Programming Is Hard – Or at Least It Used to Be: Educational Opportunities

and Challenges of AI Code Generation," in Proc. 54th ACM Tech. Symp. Comput. Sci. Educ., vol.

1, pp. 500–506, Mar. 2023. DOI: 10.1145/3545945.3569759

[19] A. Nguyen et al., "Software Engineering Education in the Era of Conversational AI: Current Trends

and Future Directions," Front. Artif. Intell., vol. 7, Jul. 2024. DOI: 10.3389/frai.2024.1436350

[20] M. M. Syeed, A. Shihavuddin, M. F. Uddin, M. Hasan, and R. H. Khan, "Outcome Based Education

(OBE): Defining the Process and Practice for Engineering Education," IEEE Access, vol. 10, pp.

119170–119192, 2022. DOI: 10.1109/ACCESS.2022.3219477

[21] E. Ceh-Varela, C. Canto-Bonilla, and D. Duni, "Application of Project-Based Learning to a Software

Engineering Course in a Hybrid Class Environment," Inf. Softw. Technol., vol. 158, p. 107189, 2023.

DOI: 10.1016/j.infsof.2023.107189

[22] A. Mbiada, B. Isong, F. Lugayizi, and A. Abu-Mahfouz, "Towards Integrated Framework for

Efficient Educational Software Development," in 2023 IEEE/ACIS 21st Int. Conf. Softw. Eng. Res.,

Manag. Appl. (SERA), pp. 53–60, May 2023. DOI: 10.1109/SERA57763.2023.10197734

[23] M. Alenezi, "Digital Learning and Digital Institution in Higher Education," Educ. Sci., vol. 13, no.

1, p. 88, 2023. DOI: 10.3390/educsci13010088

[24] J. Díaz et al., "Harmonizing DevOps Taxonomies – A Grounded Theory Study," J. Syst. Softw., vol.

208, p. 111908, 2024. DOI: 10.1016/j.jss.2023.111908

[25] E. Sarmiento-Calisaya, A. Mamani-Aliaga, and J. C. Leite, "Introducing Computer Science

Undergraduate Students to DevOps Technologies from Software Engineering Fundamentals," in

Proc. ICSE 2024 Softw. Eng. Educ. Train., Apr. 2024.

[26] S. S. Rathore, S. Tiwari, and S. U. Farooq, "Workshop Report on Emerging Software Engineering

Education," in Proc. 17th Innov. Softw. Eng. Conf. (ISEC '24), Feb. 2024, pp. 1–2. DOI:

10.1145/3641399.3641419

International Journal of Artificial Intelligence Applications. Volume1 | Number 2 | December 2025 11

[27] J. Wynekoop and K. Nakatani, "Critical Thinking Skills for Computing Professionals: Closing the

Education–Industry Gap," Ind. High. Educ., vol. 38, no. 4, pp. 376–384, 2024. DOI:

10.1177/09504222231219464

[28] A. Padovano and M. Cardamone, "Towards Human-AI Collaboration in the Competency-Based

Curriculum Development Process: The Case of Industrial Engineering and Management

Education," Comput. Educ.: Artif. Intell., vol. 7, p. 100256, 2024. DOI: 10.1016/j.caeai.2024.100256

[29] J. Morrison et al., "Building Software Engineering Capacity through a University Open Source

Program Office," in FSE Companion '24, Porto de Galinhas, Brazil, Jul. 2024. DOI:

10.1145/3663529.3663866

[30] U. Iftikhar, N. Ali, J. Börstler, and M. Usman, "A Tertiary Study on Links Between Source Code

Metrics and External Quality Attributes," Inf. Softw. Technol., vol. 165, p. 107348, Jan. 2024. DOI:

10.1016/j.infsof.2023.107348

[31] N. Nikolaidis, N. Mittas, A. Ampatzoglou, D. Feitosa, and A. Chatzigeorgiou, "A Metrics-Based

Approach for Selecting Among Various Refactoring Candidates," Empir. Softw. Eng., vol. 29, no.

1, Dec. 2023. DOI: 10.1007/s10664-023-10412-w

[32] A. Tete, F. Toure, and M. Badri, "Using Deep Learning and Object-Oriented Metrics to Identify

Critical Components in Object-Oriented Systems," in Proc. 2023 5th World Symp. Softw. Eng., pp.

48–54, Sep. 2023. DOI: 10.1145/3631991.3631998

[33] M. M. H. Shuvo, S. K. Islam, J. Cheng, and B. I. Morshed, "Efficient Acceleration of Deep Learning

Inference on Resource-Constrained Edge Devices: A Review," Proc. IEEE, vol. 111, no. 1, pp. 42–91,

Jan. 2023. DOI: 10.1109/JPROC.2022.3226481

[34] C. Ebert and P. Louridas, "Generative AI for Software Practitioners," IEEE Softw., vol. 40, no. 4, pp.

30–38, Jul. 2023. DOI: 10.1109/MS.2023.3265877

[35] A. Panyam and P. Gujar, "How AI Agents Are Transforming Software Engineering and the Future

of Product Development," Computer, vol. 58, no. 5, pp. 71–77, May 2025. DOI:

10.1109/MC.2024.3488378

[36] R. M. Cantalapiedra, V. Gutiérrez, and M. Á. Serrano, "The Future of AI-Driven Software

Engineering," ACM Trans. Softw. Eng. Methodol., Dec. 2024. DOI: 10.1145/3715003

[37] P. Ardimento and M. Scalera, "Artificial Intelligence for Software Engineering: The Journey So Far

and the Road Ahead," ACM Trans. Softw. Eng. Methodol., Dec. 2024. DOI: 10.1145/3719006

[38] L. Rossi and A. Marino, "From Today's Code to Tomorrow's Symphony: The AI Transformation of

Developer's Routine by 2030," ACM Trans. Softw. Eng. Methodol., vol. 34, no. 2, Jan. 2025. DOI:

10.1145/3709353

[39] M. Alami, M. Zahedi, and O. Krancher, "The Role of Psychological Safety in Promoting Software

Quality in Agile Teams," Empir. Softw. Eng., vol. 29, no. 5, Jul. 2024. DOI: 10.1007/s10664-024-

10512-1

[40] M. Escobar, R. Noel, and O. Pastor, "Prompt-Guided Evaluation of GPT-4o, Gemini and DeepSeek

on UML-to-Java Code Generation," in Advances in Conceptual Modeling. ER 2025. Lecture Notes

in Computer Science, vol. 16190. Springer, Cham. DOI: 10.1007/978-3-032-08620-4_13

[41] S. Karki, J. Rjoub, and A. Bentahar, "Transformer Models in Biomedicine," BMC Med. Inform.

Decis. Mak., vol. 24, no. 1, p. 221, Aug. 2024. DOI: 10.1186/s12911-024-02600-5

