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ABSTRACT — Code reviews have always been a necessary evil in software development but one that was 
very time consuming. Nevertheless, it is much tougher for educators in education due to evaluating codes for 
hundreds of students. This paper describes the design and deployment of an AI-assisted code review system 
in a university computer science department. The system uses the transformer and GPT-4 models for aiding 
the human graders in assessing programming assignments of various university courses. The system checks 
the code for syntax and semantic errors, design and implementation patterns, and compliance with coding 
standards.  In a six-month study run of involving 150 student projects, the automated system detected around 
87% of code quality issues needing human inspection. It cut down the time taken by educators to review code 
by approximately 62%, with the same grade of feedback quality. Based on our experience, AI for code review 
has exciting potentials but also currently has limitations in an academic environment. It is good at spotting 
common mistakes as well as style issues, but not so good at picking up on context-sensitive design decisions 
or pedagogical issues. The study provides evidence of AI-supported code review for the academic field and 
suggestions for educators wishing to set up a similar system. 
 
Keywords —  Artificial Intelligence; Code Review Automation; GPT-4; Software Engineering Education; 
Large Language Models; Automated Assessment; Educational Technology. 
     

 

1. INTRODUCTION 

All code should be reviewed by developers in software engineering practices in order to 

detect bugs, enforce coding standards, and improve quality. The manual procedure is tiring 

and takes a lot of time, at least in the universities where professors have heaps of stacks of 

assignments to read through. Do not forget the humans' inconsistency. Recent developments 

in AI, especially large-scale language models and transformer architectures create interesting 

new possibilities for automating at least parts of code review [1]. Recent AI-powered 

frameworks have demonstrated effectiveness in enhancing bug detection and code reliability 

through automated testing [2]. AI is increasingly being introduced in code review in 

universities and companies as well. Research shows that these tools can accurately identify code 

smells, security vulnerabilities, styling issues, among others. However, not much investigation 

has occurred of these artefacts specifically within educational settings. The teaching contexts 

arise several challenges – students of vastly different expertise, providing some feedback the 

learner can actually use, trying to keep human in the loop for pedagogical reasons, etc. This 

project highlights our experience with using AI-based code review system at university to 
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tackle these issues. We adapted recent large language models work, primarily focused on GPT-

4, to fit the requirements for academic code grading [3]. 

The integration of AI techniques is done in our system. Thus, it generates a comment 

using natural language processing. Moreover, it recognizes patterns using machine learning. 

Also, it uses the expert system which is rule-based for checking constraints. Our contributions 

involve: first, we build an AI-based code review system for academic use. Second, we evaluated 

the system over several programming courses with students with different programming skills. 

Third, we analyzed the impact on instructor effort and the quality of feedback. Fourth, we set 

the boundaries of the current deep learning AI model’s capability for academic code reviews. 

Fifth, we provide actionable recommendations for educators and institutions planning such a 

system [4]. 

2. RELATED WORK 

2.1. Automated Code Review Systems 

Automated code review has come a long way over the last ten years or so. Traditional 

static analysis tools have gotten much smarter with machine learning capabilities for detecting 

complex patterns and potential bugs. Tufano and colleagues [1] showed that deep learning 

models can manage various code review tasks pretty well, including generating comments and 

assessing quality. Their analysis was comprehensive and revealed both what works and what 

does not in current approaches, making it clear we need to keep pushing forward in this area. 

Vijayvargiya et al. [3] described Auto Commenter, an LLM-based system Google 

deployed for four programming languages. They proved you can do this at massive scale while 

keeping users happy. Similarly, AI-enhanced code review systems [5, 6, 7] and automated 

comment generation tools [8] demonstrated that systems built on GPT-4 can provide useful 

automated review comments across diverse types of code repositories. AI-powered testing 

frameworks [2] have shown particular promise in detecting defects through machine learning 

and anomaly detection techniques. 

Yin et al. [4] suggested using program structure information through graph 

representations to make code review more effective. Their PDG2Seq algorithm turns program 

dependency graphs into sequences while keeping structural and semantic information intact, 

showing better results than approaches that just look at sequences. 

2.2. AI and Large Language Models in Software Engineering 

Turner [9] introduceed transformer architectures and their mathematical foundations. 

Islam et al. [10] conducted an extensive survey of transformer applications in deep learning 

tasks, highlighting their ability to model contextual relationships in sequential data. Recent 

research examines both the promises and perils of transformer-based models for software 

engineering [11]. 

The transformer architecture introduced by Vaswani et al. [12] forms the foundation of 

modern language models. GPT-4's technical capabilities [13] have been extensively evaluated 

on programming tasks, demonstrating strong performance on code generation challenges [14] 
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and systematic code evaluation [15], though requiring human validation for production use 

[16]. 

2.3. Software Engineering Education and AI 

More attention is recently being paid to artificial intelligence tools being integrated into 

software engineering education. Recent research has explored the potential applications of 

generative AI to enhance various aspects of computer science education (for example, 

personalized learning and automated assessment) [17, 18, 19]. Concerns about academic 

integrity and the pedagogical implications of AI help remain live issues. 

According to Syeed et al. [20], undertaking outcome-based education is advantageous 

due to the realization of the industry-driven subject software engineering in practice. Project-

based learning approaches [21] and integrated frameworks for educational software 

development [22] combined with digital learning in higher education [23] and DevOps 

integration into curricula [24, 25] support modern software engineering education. Petrovska 

et al. [17] conducted a competency-based assessment of generative AI in software development 

educational activities. Recent workshops [26] and studies on critical thinking skills [27] 

emphasize human-AI collaboration in curriculum development [28], with universities building 

capacity through open source programs [29]. 

3. METHODOLOGY 

3.1. System Architecture 

Our AI code review system has been designed to be modular and hence divided into four 

important components which are: The Code Analysis Engine, AI Inference Module, Feedback 

Generation System, Review Management Interface. The Code Analysis Engine conducts 

preliminary static analysis incorporating standard tools to extract metrics, identify syntax 

errors, flag common anti-patterns, and assess code quality attributes [30, 31]. Deep learning and 

object-oriented metrics [32] inform our analysis engine design. The initial iteration of this code, 

along with its generated results, is structured in a way that it can be supplied to AI models for 

verification and correction of complex semantic errors in the code. A basic level check will now 

occur automatically in the system for any student code. We optimized custom prompts for code 

review in an educational setting by using OpenAI API to tap into GPT-4 using AI Inference 

Module. We built different prompting templates for programming languages like python, java 

and others and similar templating assignment to do with algorithms, data structure, web dev. 

The API in the module makes batch calls, optimizes token pattern, while attempts to maintain 

context in file's chunk across file chunk. The system for generating feedback combines the 

findings from static analysis and AI inferences to create together a code review comment. The 

comments filtering module removes repetitive comments, highlights problems, and formats 

comments to improve pedagogical use. We incorporated educational best practices like 

constructive tone, specific examples, actional recommendations, and more. The Review 

Management Interface provides instructor tools to define review criteria, counter-check review 

performance, validate feedback from AI, and export results for further grading. The interface 

enables teachers to reject the machine's suggestions, and the changes to the question generation 
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system are documented in order to train it further. The system architecture and inter-

component data flow are shown in Figure 1. 
 

 

Student Code Submission (.py, .java, .cpp) 

↓ 

1. Code Analysis Engine 
Static Analysis Tools: Pylint, Flake8, Checkstyle 

Extracts: Syntax errors, style violations, code metrics 
 

↓ 

2. AI Inference Module 
GPT-4 API with Custom Educational Prompts 

Analyzes: Logic errors, design patterns, best practices 
 

↓ 

3. Feedback Generation System 
Consolidates & prioritizes findings 

Generates: Pedagogically-appropriate feedback comments 
 

↓ 

4. Review Management Interface 
Instructor Dashboard: Validate, modify, export reviews 
Delivers feedback to students & captures improvements 

 

Figure 1. System Architecture Overview 

3.2. Implementation Details 

The official Python library from OpenAI allows easy access to the GPT-4 model. Our 

implementation considers efficient deep learning inference techniques [33]. The following are 

the main dependencies we used (except standard python libraries) that are required to use 

GPT-4. A complete system was developed utilizing python. The official Python library from 

OpenAI allows easy access to the GPT-4 model. To break down your code for discovering static 

errors we used Pylint and Flake8. The library Pandas Python Data have been used to parse 

data. We have deployed all components on university servers after implementing all the 

security features for keeping any student code safe from any misuse and also to prevent 

plagiarism. A few parameter settings in GPT-4 were tried out by us to set definitions for our 

system. We experimented with modifying the temperature setting and maximum tokens. We 

tried using various prompt texts and saw which one looked to be the most effective. We 

attempted different organization and grouping of our prompts in a variety of budgets. After 

several tries, we were able to discover effective setups for the different situation types. A 

temperature setting of 0.3 serves us well in consistently forcing GPT-4 to catch clear-cut 

objective errors. Figure 2 compares the traditional manual review workflow with our AI-

assisted approach, highlighting the time savings and consistency improvements achieved 

through automation of routine checks while maintaining human oversight for complex 

decisions. 
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TRADITIONAL MANUAL AI-ASSISTED 

  
Receive Code 
⏱ 1 min 

Automated Static Analysis 
⏱ 10 sec 

▼ ▼ 

Check Syntax 
⏱ 3 min 

GPT-4 AI Analysis 
⏱ 30 sec 

▼ ▼ 
Review Style 
⏱ 4 min 

Auto Feedback Generation 
⏱ 5 sec 

▼ ▼ 
Analyze Logic & Design 

⏱ 6 min 
Instructor Validation 

⏱ 3 min 

▼ ▼ 

Write Comments 
⏱ 5 min 

Additional Manual Review 
⏱ 2 min 

▼ ▼ 
Final Review & Grade 

⏱ 3 min 
Deliver Feedback 

⏱ 30 sec 

  

TOTAL: ~22 min 
Slow & Variable 

TOTAL: ~6 min 

✓ 73% Faster & Consistent 

Figure 2. Traditional vs. AI-Assisted Code Review Workflow 

3.3. Data Collection and Experimental Setup 

The investigation was conducted in a period of 6 months, namely Spring and Fall 

semesters of 2024 in three computer science classes. The study sample comprised of 150 

students. Across all the course assignments submitted, there were 450 assignments, many of 

which were simple algorithms to multi-file projects. To comprehensively evaluate our 

measures, we employ a combination of qualitative and quantitative techniques. We possess 

quantitative metrics on one side. Conversely, there are qualitative assessments. Measures such 

as detection accuracy (precision, recall, F1-score) for various issue types, review time reduction 

and consistency measures. The qualitative analysis consists of an instructor survey, student 

feedback analysis, and a case study of examples where recommendations differ from human 

judgments. Manual review is required to ensure our evaluation's ground truth. 

3.4. Ethical Considerations 

The researchers received institutional review board approval and obtained informed 

consent from all the students. We made it clear to students from the very beginning that AI-

assisted review would not take over grading or replace human review. Students could ask for 

purely human review at any time. All code, grades and feedback data were anonymized for the 

purpose of the research. We established strict data protection processes. We clearly mentioned 

about being over trusting the system for example, humans were always the ones to create final 

letter grades and make re-marking decisions. Furthermore, the students could 

question/challenge feedback from human instructors. Students were informed that this AI 

system is a software assistant that allows instructors to offer more. 
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4. RESULTS 

4.1. Detection Accuracy 

The AI system is significantly capable of determining the usual kinds of code quality 

problems. The detection accuracy for the distinct categories is shown in Table I. Detection rates 

for syntax errors and style violations are the best (precision: 0.94, recall: 0.91) as they are driven 

by high-coverage rules which are usually well-defined. Taking into consideration the high 

precision of 0.78 and recall of 0.71, logic errors and algorithmic inefficiencies are more difficult. 
 

Table 1: DETECTION ACCURACY BY ISSUE CATEGORY 

Issue Category Precision Recall F1-Score 

Syntax Errors 0.94 0.91 0.92 

Style Violations 0.93 0.89 0.91 

Missing Error Handling 0.86 0.84 0.85 

Variable Naming Issues 0.91 0.87 0.89 

Inefficient Loops 0.84 0.80 0.82 

Logic Errors 0.78 0.71 0.74 

Algorithmic Inefficiency 0.75 0.68 0.71 

OOP Design Violations 0.69 0.65 0.67 

The system demonstrated good classification performance, with an F1-score of 0.85 for 

missing error handling, 0.89 for inappropriate variable names, and 0.82 for inefficient loop 

constructs. In the case of object-oriented design principal violations, it showed a moderate 

performance (F1-score: 0.67), as that would require a holistic understanding of the entire system 

design. A comparison analysis revealed that the AI discovered about 87% of the things 

identified by the expert reviewers. However, it also caught an additional 15% legitimate 

problems that were not picked up by the human review. 

4.2. Review Time Reduction 

The instructor spent the following time on code review before and after AI Assisted code 

review. Refer the Table II. The time allocated to code review experiences a sharp decline. The 

faculty spent an average of 12 mins per assignment for the intro category and 25 mins per 

assignment for the advanced category on code review in total time before the implementation. 

On the contrary, that might use AI aided. 

 
Table 2: REVIEW TIME COMPARISON (MINUTES PER ASSIGNMENT) 

Course Level Manual Review AI-Assisted Time Saved Reduction 

Introductory (CS101) 12.0 4.5 7.5 62% 

Intermediate (CS201) 18.0 7.2 10.8 60% 

Advanced (CS301) 25.0 9.5 15.5 62% 

Simple Assignments 8.0 2.0 6.0 75% 

Complex Projects 32.0 18.0 14.0 44% 

According to the research, the time savings depend on the complexity of the contribution 

and also functional requirements and the skills of the students. For example, instructor review 

times were reduced 75% on average for assignments where the main problems were related to 

syntax and style. That was the easiest of contributions. Reduction of review times was lesser 

(40-45%) for projects requiring architecture scrutiny. The instructor still needs enough time to 
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address the higher-level considerations for assessment. On the presenter end, although less 

time was consumed, the nature of the feedback was the same or better. The AI system flagged 

the issue in all the studies. 

4.3. Feedback Quality and Consistency  

The 150 student surveys revealed that the AI-assisted feedback received an overall 

positive assessment. The ratings are summarized in Table III. The feedback was rated clear by 

the students with a rating of 4.1. It was rated helpful at 3.9. Also, the feedback specificity was 

rated 4.2. According to qualitative comments, the students liked the feedback because it was. 

 
Table 3: STUDENT FEEDBACK RATINGS (5-POINT LIKERT SCALE) 

Aspect Mean Score Std Dev Median 

Clarity 4.1 0.7 4.0 

Helpfulness 3.9 0.8 4.0 

Specificity 4.2 0.6 4.0 

Consistency 4.3 0.6 4.5 

Timeliness 4.5 0.5 5.0 

Overall Satisfaction 4.0 0.7 4.0 

As analyzed for consistency, the feedback standard provided has been similar due to 

feedback by AI. Meaning that similar errors had similar feedback, regardless of when submitted 

and which TA assigned. This uniformity aids in standardizing consistency for large courses 

that could have assorted styles will there be different TAs. However, some students were 

opposed to the automation that took the human touch away. They wanted insight from their 

mistakes and not just the usual automated message. Students prefer context-specific feedback 

they think would benefit them more. Also, Promoted. 

4.4. System Limitations and Failure Cases 

The research uncovered system limitations that trendily cut across assignments: First, 

domain or context-specific requirements that are not mentioned in code comments or 

assignment hand-outs often tend to be out-of-scope as far as students are concerned and do not 

get checked by the system. For instance, one of the assignments requires that the system design 

follows the MVC pattern, and all the solutions followed that. The design was not vetted as it 

was only referred to the class lectures. Even if a different student produced a solution that took 

a different architecture, that also would have been a correct solution. However, it is imperative. 

5. DISCUSSION 

5.1. Practical Implications for Academic Institutions 

As a result, institutions adopting generative AI for software practitioners [34] should 

expect to incur implementation costs upfront and have ongoing costs for API usage, prompt 

engineering, and system refinement. The transformation through AI agents [35] and the future 

of AI-driven software engineering [36, 37, 38] suggest early adoption provides competitive 

advantages. The deployment of AI-assisted code review in our setting was successful, 

indicating that it is practical with low instructional resources for a new institute. The system 

worked best when it was embedded in existing systems and workflows and did not replace a 
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human reviewer completely. As a result, a school utilizing ChatGPT for real applications 

should expect to incur implementation costs upfront and expect to have ongoing costs of using 

the API plus time spent re-engineering prompts and reworking. Due to our experience, we 

know repetitive feedback on simple issues can lead to enhanced learning. This means AI-

assisted review works best in a large intro course. For higher learning where the design and 

architecture matter more, the AI can be a first-pass filter for which the instructor can be the 

‘reviewer.’ The cost of the API for GPT-4 is about $0.15 per assignment, and so far, the cost-

benefit analysis indicated that we managed to recoup the costs through a reduction in grading 

assistant hours from first semester. Schools must take into consideration both direct costs. 

5.2. Pedagogical Considerations 

It is equally possible that the over-reliance on automated marking will slightly impair the 

effectiveness of certain types of learner activities, such as critical analysis and evaluation, if 

students take the feedback [39]. Using AI to review code raises big questions and challenges 

about what we want out of learning and its assessment authenticity. Our observations 

demonstrate that automated feedback can help students acquire basic programming skills, 

while it frees up the teacher for issues of concept and solution strategy. As our students got 

familiar with the basics of programming, instant feedback on syntactic and stylistic errors 

helped them understand the errors better and rectify them before showing the final submission. 

To put it differently, students learn from mistakes and get a chance to resubmit their assignment 

after correction. The current pedagogy of formative assessment and learning from one’s 

mistakes was coordinated with this. It is equally possible that the over-reliance on automated 

marking will slightly impair the effectiveness of certain types of learner activities, such as 

critical analysis and evaluation, if students take the feedback. 

5.3. Technical Insights on AI Model Performance 

We also saw that prompt engineering played a key role in getting the best out of GPT-4 

[40]. The model benefits from explicit role definitions and structured prompts. While 

transformer models show promise across domains [41], their application to software 

engineering requires domain-specific considerations [11]. The capabilities of the Model GPT-4 

and its performance of the model were revealed in a study. To begin with, the model showed a 

deep understanding of the syntax and semantics of several programming languages including 

Python, Java and C++. As the model has been trained on a large set of public code repositories, 

it can identify common patterns and anti-patterns in code. We also saw that prompt 

engineering played a key role in getting the best out of GPT-4. The model will benefit from 

being given an explicit definition of roles, according to our code. 

6. RECOMMENDATIONS AND FUTURE WORK 

Based on our experiences, we have several suggestions for teachers and educational 

institutions that want to experiment with AI-assisted code-review. Start with the lessons and 

have simple tasks before starting on the big projects. Dedicate some time to prompt 

engineering: You do need to spend some time producing prompts for different courses, 

assignment types, and learning goals. Always ensure humans participate in the loop. AI can be 

used the direction of future research include development of educational code specialization 
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models. Also training of models on code from student submissions and related learning 

feedback (explanations, hints). This could utilize advances in research on end user program 

repair. Reverse Engineering IDEs' Runtime Behavior through Their JVM Bytecode/Executable. 

The goal is to reveal the operation of an IDE's mechanisms at runtime through taking its 

bytecode or executable apart through static or dynamic means. Researching the extended 

effects that methods have on students’ skills - Evidence based studies on the students’ learning 

outcomes and programming skills. 

7. CONCLUSION 

The case study discussed here highlights feasibilities and practicalities of automation of 

student code review using AI based system. The system was implemented as a pilot in 

academic software development with 150 students from three different courses for six months. 

According to the study, employing AI to review code cuts down time usage for during code-

reviewing by 62%. In addition, the responses from the instructors, students and the review of 

responses of the system were positive. 

The system was able to find 87% of the problems in the student code, comparable to recent 

AI-powered frameworks for bug detection [2]. Also, its managed syntax errors, style errors, 

and common logical errors well. However, it could not recognize problems associated with 

context and design decisions. This means that the power of the human reviewer can be 

combined with automation which has the ability to scale. Consistent feedback can thus be 

provided on wrongly defined errors by AI. 

Consequently, the teacher can concentrate more on advanced-dimension education 

interactions and difficult evaluation. Likewise, the teacher must integrate human assessment 

into the system to give classes on design and context issues. Issues related to sensitive situations 

and equity are also managed by humans. AI provides a complementary function to the 

reviewer’s human expertise. As AI continues to evolve, future systems will address more 

complex challenges through multi-modal data and analysis of participant responses. Just like 

that, AI contribution. Students and educators must also utilize smarter software, as software 

engineers are doing so. Through this paper we hope to ignite more research in the area. 

 

REFERENCES 

[1] R. Tufano, O. Dabić, A. Mastropaolo, M. Ciniselli, and G. Bavota, "Code Review Automation: 

Strengths and Weaknesses of the State of the Art," IEEE Trans. Softw. Eng., vol. 50, no. 2, pp. 338–

353, Feb. 2024. DOI: 10.1109/TSE.2023.3348172 

[2] O. I. Al Mrayat, M. Jawarneh, D. Ibrahim, and A. Altrad, "AI-Powered Software Testing: A Novel 

Framework for Enhancing Bug Detection and Code Reliability," Int. J. Intell. Syst. Appl. Eng., vol. 

12, no. 23s, pp. 1871–, Sep. 2024. DOI: 10.17762/ijisae.v12i23S.7147 

[3] M. Vijayvergiya et al., "AI-Assisted Assessment of Coding Practices in Modern Code Review," in 

Proc. AIware '24, Porto de Galinhas, Brazil, Jul. 2024, pp. 1–9. DOI: 10.1145/3664646.3665664 

[4] Y. Yin, Y. Zhao, Y. Sun, and C. Chen, "Automatic Code Review by Learning the Structure 

Information of Code Graph," Sensors, vol. 23, no. 5, p. 2551, Feb. 2023. DOI: 10.3390/s23052551 

[5] K. Ye, L. Zhou, and S. Huang, "Automated Code Review In Practice," arXiv preprint 

arXiv:2412.18531, Dec. 2024. 



10                                                        International Journal of Artificial Intelligence Applications. Volume 1 | Number 1| December 2025 

 

[6] D. Groeneveld et al., "AICodeReview: Advancing Code Quality with AI-Enhanced Reviews," 

SoftwareX, vol. 26, p. 101677, 2024. DOI: 10.1016/j.softx.2024.101677 

[7] R. Li et al., "Resolving Code Review Comments with Machine Learning," in Proc. 46th Int. Conf. 

Softw. Eng.: Softw. Eng. in Practice (ICSE-SEIP), Lisbon, Portugal, Apr. 2024. DOI: 

10.1145/3639477.3639746 

[8] Y. Li et al., "CodeDoctor: Multi-Category Code Review Comment Generation," Autom. Softw. Eng., 

vol. 32, no. 1, Feb. 2025. DOI: 10.1007/s10515-025-00491-y 

[9] R. E. Turner, "An Introduction to Transformers," arXiv preprint arXiv:2304.10557, Feb. 2024. 

[10] S. Islam et al., "A Comprehensive Survey on Applications of Transformers for Deep Learning 

Tasks," Expert Syst. Appl., vol. 241, p. 122666, May 2024. DOI: 10.1016/j.eswa.2023.122666 

[11] T. Zuo, H. Zhang, and M. Kim, "Promises and Perils of Using Transformer-Based Models for SE 

Research," Neural Networks, vol. 182, p. 107067, Dec. 2024. DOI: 10.1016/j.neunet.2024.107067 

[12] A. Vaswani et al., "Attention Is All You Need," in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 

Red Hook, NY, USA, 2017, pp. 6000–6010. 

[13] J. Achiam et al., "GPT-4 Technical Report," arXiv preprint arXiv:2303.08774, Mar. 2024. 

[14] P. Vishnu, "Unveiling the Role of GPT-4 in Solving LeetCode Programming Problems," Comput. 

Appl. Eng. Educ., vol. 33, no. 1, Jan. 2025. DOI: 10.1002/cae.22815 

[15] C. Song and H. Lin, "A Systematic Evaluation of Large Language Models for Generating 

Programming Code," Neural Networks, vol. 172, Mar. 2024. DOI: 10.1016/j.neunet.2024.106117 

[16] R. Poldrack, "AI-Assisted Coding: Experiments with GPT-4," arXiv preprint arXiv:2304.13187, Apr. 

2023. 

[17] O. Petrovska, L. Clift, F. Moller, and R. Pearsall, "Incorporating Generative AI into Software 

Development Education," in Proc. 8th Conf. Comput. Educ. Practice, pp. 37–40, 2024. DOI: 

10.1145/3647649.3647651 

[18] B. A. Becker et al., "Programming Is Hard – Or at Least It Used to Be: Educational Opportunities 

and Challenges of AI Code Generation," in Proc. 54th ACM Tech. Symp. Comput. Sci. Educ., vol. 

1, pp. 500–506, Mar. 2023. DOI: 10.1145/3545945.3569759 

[19] A. Nguyen et al., "Software Engineering Education in the Era of Conversational AI: Current Trends 

and Future Directions," Front. Artif. Intell., vol. 7, Jul. 2024. DOI: 10.3389/frai.2024.1436350 

[20] M. M. Syeed, A. Shihavuddin, M. F. Uddin, M. Hasan, and R. H. Khan, "Outcome Based Education 

(OBE): Defining the Process and Practice for Engineering Education," IEEE Access, vol. 10, pp. 

119170–119192, 2022. DOI: 10.1109/ACCESS.2022.3219477 

[21] E. Ceh-Varela, C. Canto-Bonilla, and D. Duni, "Application of Project-Based Learning to a Software 

Engineering Course in a Hybrid Class Environment," Inf. Softw. Technol., vol. 158, p. 107189, 2023. 

DOI: 10.1016/j.infsof.2023.107189 

[22] A. Mbiada, B. Isong, F. Lugayizi, and A. Abu-Mahfouz, "Towards Integrated Framework for 

Efficient Educational Software Development," in 2023 IEEE/ACIS 21st Int. Conf. Softw. Eng. Res., 

Manag. Appl. (SERA), pp. 53–60, May 2023. DOI: 10.1109/SERA57763.2023.10197734 

[23] M. Alenezi, "Digital Learning and Digital Institution in Higher Education," Educ. Sci., vol. 13, no. 

1, p. 88, 2023. DOI: 10.3390/educsci13010088 

[24] J. Díaz et al., "Harmonizing DevOps Taxonomies – A Grounded Theory Study," J. Syst. Softw., vol. 

208, p. 111908, 2024. DOI: 10.1016/j.jss.2023.111908 

[25] E. Sarmiento-Calisaya, A. Mamani-Aliaga, and J. C. Leite, "Introducing Computer Science 

Undergraduate Students to DevOps Technologies from Software Engineering Fundamentals," in 

Proc. ICSE 2024 Softw. Eng. Educ. Train., Apr. 2024. 

[26] S. S. Rathore, S. Tiwari, and S. U. Farooq, "Workshop Report on Emerging Software Engineering 

Education," in Proc. 17th Innov. Softw. Eng. Conf. (ISEC '24), Feb. 2024, pp. 1–2. DOI: 

10.1145/3641399.3641419 



International Journal of Artificial Intelligence Applications. Volume1 | Number 2 | December 2025                                                       11 

 

[27] J. Wynekoop and K. Nakatani, "Critical Thinking Skills for Computing Professionals: Closing the 

Education–Industry Gap," Ind. High. Educ., vol. 38, no. 4, pp. 376–384, 2024. DOI: 

10.1177/09504222231219464 

[28] A. Padovano and M. Cardamone, "Towards Human-AI Collaboration in the Competency-Based 

Curriculum Development Process: The Case of Industrial Engineering and Management 

Education," Comput. Educ.: Artif. Intell., vol. 7, p. 100256, 2024. DOI: 10.1016/j.caeai.2024.100256 

[29] J. Morrison et al., "Building Software Engineering Capacity through a University Open Source 

Program Office," in FSE Companion '24, Porto de Galinhas, Brazil, Jul. 2024. DOI: 

10.1145/3663529.3663866 

[30] U. Iftikhar, N. Ali, J. Börstler, and M. Usman, "A Tertiary Study on Links Between Source Code 

Metrics and External Quality Attributes," Inf. Softw. Technol., vol. 165, p. 107348, Jan. 2024. DOI: 

10.1016/j.infsof.2023.107348 

[31] N. Nikolaidis, N. Mittas, A. Ampatzoglou, D. Feitosa, and A. Chatzigeorgiou, "A Metrics-Based 

Approach for Selecting Among Various Refactoring Candidates," Empir. Softw. Eng., vol. 29, no. 

1, Dec. 2023. DOI: 10.1007/s10664-023-10412-w 

[32] A. Tete, F. Toure, and M. Badri, "Using Deep Learning and Object-Oriented Metrics to Identify 

Critical Components in Object-Oriented Systems," in Proc. 2023 5th World Symp. Softw. Eng., pp. 

48–54, Sep. 2023. DOI: 10.1145/3631991.3631998 

[33] M. M. H. Shuvo, S. K. Islam, J. Cheng, and B. I. Morshed, "Efficient Acceleration of Deep Learning 

Inference on Resource-Constrained Edge Devices: A Review," Proc. IEEE, vol. 111, no. 1, pp. 42–91, 

Jan. 2023. DOI: 10.1109/JPROC.2022.3226481 

[34] C. Ebert and P. Louridas, "Generative AI for Software Practitioners," IEEE Softw., vol. 40, no. 4, pp. 

30–38, Jul. 2023. DOI: 10.1109/MS.2023.3265877 

[35] A. Panyam and P. Gujar, "How AI Agents Are Transforming Software Engineering and the Future 

of Product Development," Computer, vol. 58, no. 5, pp. 71–77, May 2025. DOI: 

10.1109/MC.2024.3488378 

[36] R. M. Cantalapiedra, V. Gutiérrez, and M. Á. Serrano, "The Future of AI-Driven Software 

Engineering," ACM Trans. Softw. Eng. Methodol., Dec. 2024. DOI: 10.1145/3715003 

[37] P. Ardimento and M. Scalera, "Artificial Intelligence for Software Engineering: The Journey So Far 

and the Road Ahead," ACM Trans. Softw. Eng. Methodol., Dec. 2024. DOI: 10.1145/3719006 

[38] L. Rossi and A. Marino, "From Today's Code to Tomorrow's Symphony: The AI Transformation of 

Developer's Routine by 2030," ACM Trans. Softw. Eng. Methodol., vol. 34, no. 2, Jan. 2025. DOI: 

10.1145/3709353 

[39] M. Alami, M. Zahedi, and O. Krancher, "The Role of Psychological Safety in Promoting Software 

Quality in Agile Teams," Empir. Softw. Eng., vol. 29, no. 5, Jul. 2024. DOI: 10.1007/s10664-024-

10512-1 

[40] M. Escobar, R. Noel, and O. Pastor, "Prompt-Guided Evaluation of GPT-4o, Gemini and DeepSeek 

on UML-to-Java Code Generation," in Advances in Conceptual Modeling. ER 2025. Lecture Notes 

in Computer Science, vol. 16190. Springer, Cham. DOI: 10.1007/978-3-032-08620-4_13 

[41] S. Karki, J. Rjoub, and A. Bentahar, "Transformer Models in Biomedicine," BMC Med. Inform. 

Decis. Mak., vol. 24, no. 1, p. 221, Aug. 2024. DOI: 10.1186/s12911-024-02600-5 


