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ABSTRACT — Code reviews have always been a necessary evil in software development but one that was
very time consuming. Nevertheless, it is much tougher for educators in education due to evaluating codes for
hundreds of students. This paper describes the design and deployment of an Al-assisted code review system
in a university computer science department. The system uses the transformer and GPT-4 models for aiding
the human graders in assessing programming assignments of various university courses. The system checks
the code for syntax and semantic errors, design and implementation patterns, and compliance with coding
standards. In a six-month study run of involving 150 student projects, the automated system detected around
87% of code quality issues needing human inspection. It cut down the time taken by educators to review code
by approximately 62%, with the same grade of feedback quality. Based on our experience, Al for code review
has exciting potentials but also currently has limitations in an academic environment. It is good at spotting
common mistakes as well as style issues, but not so good at picking up on context-sensitive design decisions
or pedagogical issues. The study provides evidence of Al-supported code review for the academic field and
suggestions for educators wishing to set up a similar system.

Keywords — Artificial Intelligence; Code Review Automation; GPT-4; Software Engineering Education;
Large Language Models; Automated Assessment; Educational Technology.

1. INTRODUCTION

All code should be reviewed by developers in software engineering practices in order to
detect bugs, enforce coding standards, and improve quality. The manual procedure is tiring
and takes a lot of time, at least in the universities where professors have heaps of stacks of
assignments to read through. Do not forget the humans' inconsistency. Recent developments
in Al, especially large-scale language models and transformer architectures create interesting
new possibilities for automating at least parts of code review [1]. Recent Al-powered
frameworks have demonstrated effectiveness in enhancing bug detection and code reliability
through automated testing [2]. Al is increasingly being introduced in code review in
universities and companies as well. Research shows that these tools can accurately identify code
smells, security vulnerabilities, styling issues, among others. However, not much investigation
has occurred of these artefacts specifically within educational settings. The teaching contexts
arise several challenges - students of vastly different expertise, providing some feedback the
learner can actually use, trying to keep human in the loop for pedagogical reasons, etc. This
project highlights our experience with using Al-based code review system at university to
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tackle these issues. We adapted recent large language models work, primarily focused on GPT-
4, to fit the requirements for academic code grading [3].

The integration of Al techniques is done in our system. Thus, it generates a comment
using natural language processing. Moreover, it recognizes patterns using machine learning.
Also, it uses the expert system which is rule-based for checking constraints. Our contributions
involve: first, we build an Al-based code review system for academic use. Second, we evaluated
the system over several programming courses with students with different programming skills.
Third, we analyzed the impact on instructor effort and the quality of feedback. Fourth, we set
the boundaries of the current deep learning Al model’s capability for academic code reviews.
Fifth, we provide actionable recommendations for educators and institutions planning such a
system [4].

2. RELATED WORK

2.1. Automated Code Review Systems

Automated code review has come a long way over the last ten years or so. Traditional
static analysis tools have gotten much smarter with machine learning capabilities for detecting
complex patterns and potential bugs. Tufano and colleagues [1] showed that deep learning
models can manage various code review tasks pretty well, including generating comments and
assessing quality. Their analysis was comprehensive and revealed both what works and what
does not in current approaches, making it clear we need to keep pushing forward in this area.

Vijayvargiya et al. [3] described Auto Commenter, an LLM-based system Google
deployed for four programming languages. They proved you can do this at massive scale while
keeping users happy. Similarly, Al-enhanced code review systems [5, 6, 7] and automated
comment generation tools [8] demonstrated that systems built on GPT-4 can provide useful
automated review comments across diverse types of code repositories. Al-powered testing
frameworks [2] have shown particular promise in detecting defects through machine learning
and anomaly detection techniques.

Yin et al. [4] suggested using program structure information through graph
representations to make code review more effective. Their PDG2Seq algorithm turns program
dependency graphs into sequences while keeping structural and semantic information intact,
showing better results than approaches that just look at sequences.

2.2. Al and Large Language Models in Software Engineering

Turner [9] introduceed transformer architectures and their mathematical foundations.
Islam et al. [10] conducted an extensive survey of transformer applications in deep learning
tasks, highlighting their ability to model contextual relationships in sequential data. Recent
research examines both the promises and perils of transformer-based models for software
engineering [11].

The transformer architecture introduced by Vaswani et al. [12] forms the foundation of
modern language models. GPT-4's technical capabilities [13] have been extensively evaluated
on programming tasks, demonstrating strong performance on code generation challenges [14]
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and systematic code evaluation [15], though requiring human validation for production use
[16].

2.3. Software Engineering Education and Al

More attention is recently being paid to artificial intelligence tools being integrated into
software engineering education. Recent research has explored the potential applications of
generative Al to enhance various aspects of computer science education (for example,
personalized learning and automated assessment) [17, 18, 19]. Concerns about academic
integrity and the pedagogical implications of Al help remain live issues.

According to Syeed et al. [20], undertaking outcome-based education is advantageous
due to the realization of the industry-driven subject software engineering in practice. Project-
based learning approaches [21] and integrated frameworks for educational software
development [22] combined with digital learning in higher education [23] and DevOps
integration into curricula [24, 25] support modern software engineering education. Petrovska
etal. [17] conducted a competency-based assessment of generative Al in software development
educational activities. Recent workshops [26] and studies on critical thinking skills [27]
emphasize human-Al collaboration in curriculum development [28], with universities building
capacity through open source programs [29].

3. METHODOLOGY

3.1. System Architecture

Our Al code review system has been designed to be modular and hence divided into four
important components which are: The Code Analysis Engine, Al Inference Module, Feedback
Generation System, Review Management Interface. The Code Analysis Engine conducts
preliminary static analysis incorporating standard tools to extract metrics, identify syntax
errors, flag common anti-patterns, and assess code quality attributes [30, 31]. Deep learning and
object-oriented metrics [32] inform our analysis engine design. The initial iteration of this code,
along with its generated results, is structured in a way that it can be supplied to Al models for
verification and correction of complex semantic errors in the code. A basic level check will now
occur automatically in the system for any student code. We optimized custom prompts for code
review in an educational setting by using OpenAl API to tap into GPT-4 using Al Inference
Module. We built different prompting templates for programming languages like python, java
and others and similar templating assignment to do with algorithms, data structure, web dev.
The API in the module makes batch calls, optimizes token pattern, while attempts to maintain
context in file's chunk across file chunk. The system for generating feedback combines the
findings from static analysis and Al inferences to create together a code review comment. The
comments filtering module removes repetitive comments, highlights problems, and formats
comments to improve pedagogical use. We incorporated educational best practices like
constructive tone, specific examples, actional recommendations, and more. The Review
Management Interface provides instructor tools to define review criteria, counter-check review
performance, validate feedback from Al, and export results for further grading. The interface
enables teachers to reject the machine's suggestions, and the changes to the question generation
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system are documented in order to train it further. The system architecture and inter-
component data flow are shown in Figure 1.

| Student Code Submission (.py, .java, .cpp) |

l

1. Code Analysis Engine
Static Analysis Tools: Pylint, Flake8, Checkstyle
Extracts: Syntax errors, style violations, code metrics

l

2. Al Inference Module
GPT-4 API with Custom Educational Prompts
Analyzes: Logic errors, design patterns, best practices

!

3. Feedback Generation System
Consolidates & prioritizes findings
Generates: Pedagogically-appropriate feedback comments

l

4. Review Management Interface
Instructor Dashboard: Validate, modify, export reviews
Delivers feedback to students & captures improvements

Figure 1. System Architecture Overview

3.2. Implementation Details

The official Python library from OpenAl allows easy access to the GPT-4 model. Our
implementation considers efficient deep learning inference techniques [33]. The following are
the main dependencies we used (except standard python libraries) that are required to use
GPT-4. A complete system was developed utilizing python. The official Python library from
OpenAl allows easy access to the GPT-4 model. To break down your code for discovering static
errors we used Pylint and Flake8. The library Pandas Python Data have been used to parse
data. We have deployed all components on university servers after implementing all the
security features for keeping any student code safe from any misuse and also to prevent
plagiarism. A few parameter settings in GPT-4 were tried out by us to set definitions for our
system. We experimented with modifying the temperature setting and maximum tokens. We
tried using various prompt texts and saw which one looked to be the most effective. We
attempted different organization and grouping of our prompts in a variety of budgets. After
several tries, we were able to discover effective setups for the different situation types. A
temperature setting of 0.3 serves us well in consistently forcing GPT-4 to catch clear-cut
objective errors. Figure 2 compares the traditional manual review workflow with our Al-
assisted approach, highlighting the time savings and consistency improvements achieved
through automation of routine checks while maintaining human oversight for complex
decisions.



International Journal of Artificial Intelligence Applications. Volumel | Number 2 | December 2025 5

TRADITIONAL MANUAL AI-ASSISTED
Receive Code Automated Static Analysis
@ 1 min (7710 sec
v v
Check Syntax GPT-4 Al Analysis
'3 min 730 sec
\4 v
Review Style Auto Feedback Generation
1 4 min 7 5 sec
\/ \/
Analyze Logic & Design Instructor Validation
@6 min @7 3 min
v
Write Comments Additional Manual Review
@5 min @3 2 min
\4
Final Review & Grade Deliver Feedback
@ 3 min 7130 sec

TOTAL: ~22 min TOTAL: ~6 min
Slow & Variable Vv 73% Faster & Consistent

Figure 2. Traditional vs. Al-Assisted Code Review Workflow

3.3. Data Collection and Experimental Setup

The investigation was conducted in a period of 6 months, namely Spring and Fall
semesters of 2024 in three computer science classes. The study sample comprised of 150
students. Across all the course assignments submitted, there were 450 assignments, many of
which were simple algorithms to multi-file projects. To comprehensively evaluate our
measures, we employ a combination of qualitative and quantitative techniques. We possess
quantitative metrics on one side. Conversely, there are qualitative assessments. Measures such
as detection accuracy (precision, recall, F1-score) for various issue types, review time reduction
and consistency measures. The qualitative analysis consists of an instructor survey, student
feedback analysis, and a case study of examples where recommendations differ from human
judgments. Manual review is required to ensure our evaluation's ground truth.

3.4. Ethical Considerations

The researchers received institutional review board approval and obtained informed
consent from all the students. We made it clear to students from the very beginning that Al-
assisted review would not take over grading or replace human review. Students could ask for
purely human review at any time. All code, grades and feedback data were anonymized for the
purpose of the research. We established strict data protection processes. We clearly mentioned
about being over trusting the system for example, humans were always the ones to create final
letter grades and make re-marking decisions. Furthermore, the students could
question/challenge feedback from human instructors. Students were informed that this Al
system is a software assistant that allows instructors to offer more.
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4. RESULTS

4.1. Detection Accuracy

The Al system is significantly capable of determining the usual kinds of code quality
problems. The detection accuracy for the distinct categories is shown in Table I. Detection rates
for syntax errors and style violations are the best (precision: 0.94, recall: 0.91) as they are driven
by high-coverage rules which are usually well-defined. Taking into consideration the high
precision of 0.78 and recall of 0.71, logic errors and algorithmic inefficiencies are more difficult.

Table 1: DETECTION ACCURACY BY ISSUE CATEGORY

Issue Category Precision Recall F1-Score
Syntax Errors 0.94 0.91 0.92
Style Violations 0.93 0.89 0.91
Missing Error Handling 0.86 0.84 0.85
Variable Naming Issues 0.91 0.87 0.89
Inefficient Loops 0.84 0.80 0.82
Logic Errors 0.78 0.71 0.74
Algorithmic Inefficiency 0.75 0.68 0.71
OOP Design Violations 0.69 0.65 0.67

The system demonstrated good classification performance, with an Fl1-score of 0.85 for
missing error handling, 0.89 for inappropriate variable names, and 0.82 for inefficient loop
constructs. In the case of object-oriented design principal violations, it showed a moderate
performance (F1-score: 0.67), as that would require a holistic understanding of the entire system
design. A comparison analysis revealed that the Al discovered about 87% of the things
identified by the expert reviewers. However, it also caught an additional 15% legitimate
problems that were not picked up by the human review.

4.2. Review Time Reduction

The instructor spent the following time on code review before and after Al Assisted code
review. Refer the Table II. The time allocated to code review experiences a sharp decline. The
faculty spent an average of 12 mins per assignment for the intro category and 25 mins per
assignment for the advanced category on code review in total time before the implementation.
On the contrary, that might use Al aided.

Table 2: REVIEW TIME COMPARISON (MINUTES PER ASSIGNMENT)

Course Level Manual Review Al-Assisted Time Saved Reduction
Introductory (C5101) 12.0 4.5 7.5 62%
Intermediate (CS201) 18.0 7.2 10.8 60%

Advanced (CS301) 25.0 9.5 15.5 62%
Simple Assignments 8.0 2.0 6.0 75%
Complex Projects 32.0 18.0 14.0 44%

According to the research, the time savings depend on the complexity of the contribution
and also functional requirements and the skills of the students. For example, instructor review
times were reduced 75% on average for assignments where the main problems were related to
syntax and style. That was the easiest of contributions. Reduction of review times was lesser
(40-45%) for projects requiring architecture scrutiny. The instructor still needs enough time to
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address the higher-level considerations for assessment. On the presenter end, although less
time was consumed, the nature of the feedback was the same or better. The Al system flagged
the issue in all the studies.

4.3. Feedback Quality and Consistency

The 150 student surveys revealed that the Al-assisted feedback received an overall
positive assessment. The ratings are summarized in Table III. The feedback was rated clear by
the students with a rating of 4.1. It was rated helpful at 3.9. Also, the feedback specificity was
rated 4.2. According to qualitative comments, the students liked the feedback because it was.

Table 3: STUDENT FEEDBACK RATINGS (5-POINT LIKERT SCALE)

Aspect Mean Score Std Dev Median
Clarity 4.1 0.7 4.0
Helpfulness 3.9 0.8 4.0
Specificity 42 0.6 4.0
Consistency 43 0.6 45
Timeliness 45 0.5 5.0
Overall Satisfaction 4.0 0.7 4.0

As analyzed for consistency, the feedback standard provided has been similar due to
feedback by Al. Meaning that similar errors had similar feedback, regardless of when submitted
and which TA assigned. This uniformity aids in standardizing consistency for large courses
that could have assorted styles will there be different TAs. However, some students were
opposed to the automation that took the human touch away. They wanted insight from their
mistakes and not just the usual automated message. Students prefer context-specific feedback
they think would benefit them more. Also, Promoted.

4.4. System Limitations and Failure Cases

The research uncovered system limitations that trendily cut across assignments: First,
domain or context-specific requirements that are not mentioned in code comments or
assignment hand-outs often tend to be out-of-scope as far as students are concerned and do not
get checked by the system. For instance, one of the assignments requires that the system design
follows the MVC pattern, and all the solutions followed that. The design was not vetted as it
was only referred to the class lectures. Even if a different student produced a solution that took
a different architecture, that also would have been a correct solution. However, it is imperative.

5. DISCUSSION

5.1. Practical Implications for Academic Institutions

As a result, institutions adopting generative Al for software practitioners [34] should
expect to incur implementation costs upfront and have ongoing costs for API usage, prompt
engineering, and system refinement. The transformation through Al agents [35] and the future
of Al-driven software engineering [36, 37, 38] suggest early adoption provides competitive
advantages. The deployment of Al-assisted code review in our setting was successful,
indicating that it is practical with low instructional resources for a new institute. The system
worked best when it was embedded in existing systems and workflows and did not replace a



8 International Journal of Artificial Intelligence Applications. Volume 1 | Number 1| December 2025

human reviewer completely. As a result, a school utilizing ChatGPT for real applications
should expect to incur implementation costs upfront and expect to have ongoing costs of using
the API plus time spent re-engineering prompts and reworking. Due to our experience, we
know repetitive feedback on simple issues can lead to enhanced learning. This means Al-
assisted review works best in a large intro course. For higher learning where the design and
architecture matter more, the Al can be a first-pass filter for which the instructor can be the
‘reviewer.” The cost of the API for GPT-4 is about $0.15 per assignment, and so far, the cost-
benefit analysis indicated that we managed to recoup the costs through a reduction in grading
assistant hours from first semester. Schools must take into consideration both direct costs.

5.2. Pedagogical Considerations

It is equally possible that the over-reliance on automated marking will slightly impair the
effectiveness of certain types of learner activities, such as critical analysis and evaluation, if
students take the feedback [39]. Using Al to review code raises big questions and challenges
about what we want out of learning and its assessment authenticity. Our observations
demonstrate that automated feedback can help students acquire basic programming skills,
while it frees up the teacher for issues of concept and solution strategy. As our students got
familiar with the basics of programming, instant feedback on syntactic and stylistic errors
helped them understand the errors better and rectify them before showing the final submission.
To put it differently, students learn from mistakes and get a chance to resubmit their assignment
after correction. The current pedagogy of formative assessment and learning from one’s
mistakes was coordinated with this. It is equally possible that the over-reliance on automated
marking will slightly impair the effectiveness of certain types of learner activities, such as
critical analysis and evaluation, if students take the feedback.

5.3. Technical Insights on AT Model Performance

We also saw that prompt engineering played a key role in getting the best out of GPT-4
[40]. The model benefits from explicit role definitions and structured prompts. While
transformer models show promise across domains [41], their application to software
engineering requires domain-specific considerations [11]. The capabilities of the Model GPT-4
and its performance of the model were revealed in a study. To begin with, the model showed a
deep understanding of the syntax and semantics of several programming languages including
Python, Java and C++. As the model has been trained on a large set of public code repositories,
it can identify common patterns and anti-patterns in code. We also saw that prompt
engineering played a key role in getting the best out of GPT-4. The model will benefit from
being given an explicit definition of roles, according to our code.

6. RECOMMENDATIONS AND FUTURE WORK

Based on our experiences, we have several suggestions for teachers and educational
institutions that want to experiment with Al-assisted code-review. Start with the lessons and
have simple tasks before starting on the big projects. Dedicate some time to prompt
engineering: You do need to spend some time producing prompts for different courses,
assignment types, and learning goals. Always ensure humans participate in the loop. Al can be
used the direction of future research include development of educational code specialization
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models. Also training of models on code from student submissions and related learning
feedback (explanations, hints). This could utilize advances in research on end user program
repair. Reverse Engineering IDEs' Runtime Behavior through Their JVM Bytecode/ Executable.
The goal is to reveal the operation of an IDE's mechanisms at runtime through taking its
bytecode or executable apart through static or dynamic means. Researching the extended
effects that methods have on students’ skills - Evidence based studies on the students’ learning
outcomes and programming; skills.

7. CONCLUSION

The case study discussed here highlights feasibilities and practicalities of automation of
student code review using Al based system. The system was implemented as a pilot in
academic software development with 150 students from three different courses for six months.
According to the study, employing Al to review code cuts down time usage for during code-
reviewing by 62%. In addition, the responses from the instructors, students and the review of
responses of the system were positive.

The system was able to find 87% of the problems in the student code, comparable to recent
Al-powered frameworks for bug detection [2]. Also, its managed syntax errors, style errors,
and common logical errors well. However, it could not recognize problems associated with
context and design decisions. This means that the power of the human reviewer can be
combined with automation which has the ability to scale. Consistent feedback can thus be
provided on wrongly defined errors by Al

Consequently, the teacher can concentrate more on advanced-dimension education
interactions and difficult evaluation. Likewise, the teacher must integrate human assessment
into the system to give classes on design and context issues. Issues related to sensitive situations
and equity are also managed by humans. Al provides a complementary function to the
reviewer’s human expertise. As Al continues to evolve, future systems will address more
complex challenges through multi-modal data and analysis of participant responses. Just like
that, Al contribution. Students and educators must also utilize smarter software, as software
engineers are doing so. Through this paper we hope to ignite more research in the area.
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