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ABSTRACT — Emotion detection in textual data represents a critical challenge in natural language processing
with applications in mental health monitoring, customer sentiment analysis, and human-computer
interaction. This study investigates three classical machine learning algorithms for multi-class emotion
classification across eleven emotional categories using a balanced dataset of approximately 106,000 annotated
sentences. The research employs Term Frequency-Inverse Document Frequency vectorization with trigram
support and 3,000-dimensional feature space. Logistic Regression, Random Forest, and Naive Bayes classifiers
were evaluated using comprehensive metrics including accuracy, precision, recall, F1-score, and five-fold
cross-validation. Results demonstrate that Logistic Regression achieved superior performance with 79.90%
accuracy, 81.18% precision, and 80.27% F1-score, substantially exceeding Random Forest at 75.32% and Naive
Bayes at 69.01%. Cross-validation analysis revealed remarkable stability with standard deviations below 0.5%,
confirming robust generalization. Per-class analysis identified enthusiasm, love, and neutral as most reliably
detected emotions exceeding 83% accuracy, while empty and sadness presented greater challenges. The
findings validate that classical machine learning approaches with proper feature engineering achieve
competitive performance for fine-grained emotion detection while offering advantages in computational
efficiency, interpretability, and deployment simplicity.

Keywords — Emotion detection, text classification, machine learning, Logistic Regression, Random Forest,
Naive Bayes, natural language processing, sentiment analysis, TF-IDF vectorization.

1. INTRODUCTION

Emotion detection in textual data represents a fundamental challenge in natural language
processing with profound implications for human-computer interaction, mental health
monitoring, customer sentiment analysis, and social media analytics. The ability to
automatically identify and classify emotional states expressed through written language
enables machines to better understand human communication, facilitating more empathetic
and context-aware artificial intelligence systems. As digital communication continues to
dominate human interaction through social media platforms, messaging applications, and
online forums, the volume of emotion-laden text data has grown exponentially, creating both
opportunities and challenges for automated emotion recognition systems [1].

Traditional approaches to emotion analysis have focused primarily on polarity-based
sentiment classification, distinguishing between positive, negative, and neutral sentiments.
However, this coarse-grained categorization fails to capture the rich emotional landscape
inherent in human communication, where discrete emotions such as joy, sadness, anger, fear,
surprise, and disgust manifest through distinct linguistic patterns and contextual cues [2]. The

* Corresponding author DOI: https://doi.org/


https://doi.org/
mailto:Motazzghoul98@gmail.com
mailto:amnehshaban@hotmail.com

2 International Journal of Artificial Intelligence Applications. Volume 1| Number 2| December 2025

transition from simple sentiment analysis to fine-grained emotion detection requires
sophisticated natural language processing techniques capable of distinguishing subtle
differences in emotional expression while maintaining robust performance across diverse
textual contexts and communication styles [3].

Machine learning approaches have emerged as the predominant methodology for
emotion detection tasks, leveraging large annotated corpora to learn statistical patterns that
characterize different emotional states. Classical machine learning algorithms, including
Support Vector Machines, Random Forests, and Naive Bayes classifiers, have demonstrated
considerable success when combined with carefully engineered features such as bag-of-words
representations, n-grams, and lexicon-based emotional indicators [4]. These traditional
methods benefit from interpretability and computational efficiency, making them particularly
suitable for applications requiring transparent decision-making processes or operating under
resource constraints [5].

The advent of deep learning has revolutionized emotion detection capabilities through
the development of neural architectures that automatically learn hierarchical feature
representations from raw text data. Recurrent Neural Networks, particularly Long Short-Term
Memory networks, have shown exceptional performance in capturing sequential dependencies
and contextual information crucial for understanding emotional content [6]. More recently,
transformer-based models such as BERT and its variants have achieved state-of-the-art
performance across numerous natural language processing tasks, including emotion
classification, by leveraging pre-trained language representations that encode rich semantic
and syntactic knowledge [7].

Despite significant advances in deep learning methodologies, classical machine learning
approaches remain highly relevant for emotion detection applications, particularly in scenarios
involving limited computational resources, smaller datasets, or requirements for model
interpretability. Traditional algorithms often provide competitive performance when
combined with sophisticated feature engineering and appropriate preprocessing techniques,
while offering advantages in training efficiency and transparency [8]. Furthermore, classical
methods serve as essential baselines for evaluating more complex architectures and provide
valuable insights into the fundamental characteristics of emotion-discriminative features in text
data [9].

The present study investigates the application of three classical machine learning
algorithms for multi-class emotion detection across eleven distinct emotional categories. The
research employs a comprehensive emotion dataset comprising approximately 106,000
annotated sentences, specifically curated to support transformer-based architectures while
maintaining balance across emotional classes [10]. By implementing Logistic Regression,
Random Forest, and Naive Bayes classifiers with optimized preprocessing pipelines and Term
Frequency-Inverse Document Frequency vectorization, this work demonstrates that classical
approaches can achieve robust performance for fine-grained emotion classification tasks. The
evaluation framework encompasses multiple performance metrics including accuracy,
precision, recall, F1-score, and cross-validation analysis, providing comprehensive insights into
model behavior and classification patterns across different emotional categories.
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2. RELATED WORK

The field of emotion detection in text has evolved significantly over the past two decades,
progressing from rule-based systems and lexicon approaches to sophisticated machine learning
and deep learning methodologies. Early research in affective computing established theoretical
foundations for computational emotion recognition, drawing upon psychological models such
as Ekman's basic emotions and Russell's circumplex model to define categorical and
dimensional representations of emotional states [11]. These psychological frameworks have
informed the design of emotion taxonomies and annotation schemes used in computational
studies, though debates continue regarding the most appropriate emotional representation for
natural language processing applications [12].

Lexicon-based approaches represented the first wave of automated emotion detection
systems, relying on manually curated dictionaries that associate words and phrases with
specific emotional categories or valence-arousal-dominance ratings. The Affective Norms for
English Words database and the NRC Emotion Lexicon exemplify influential resources that
have enabled rule-based emotion classification through keyword matching and aggregation
strategies [13]. While lexicon methods offer interpretability and require no training data, they
suffer from limited coverage of domain-specific vocabulary, inability to handle context-
dependent emotional expressions, and challenges in processing figurative language such as
sarcasm and irony [14].

Traditional machine learning approaches emerged as researchers recognized the
limitations of purely lexical methods and sought data-driven solutions capable of learning
emotional patterns from annotated corpora. Support Vector Machines gained prominence for
text classification tasks due to their effectiveness in high-dimensional feature spaces and strong
generalization capabilities [15]. Studies demonstrated that linear SVMs combined with TF-IDF
features could achieve competitive performance for emotion classification while maintaining
computational efficiency. Random Forests and ensemble methods have similarly shown
promise by combining multiple decision trees to capture complex non-linear relationships in
textual features while providing robustness against overfitting [16].

Naive Bayes classifiers, despite their simplifying independence assumptions, have
demonstrated surprisingly strong performance for text classification tasks including emotion
detection. The multinomial variant proves particularly suitable for document classification
problems where features represent term frequencies, offering computational efficiency and
interpretability that facilitate deployment in resource-constrained environments [17].
Comparative studies have shown that proper feature engineering and preprocessing can enable
Naive Bayes to approach or exceed the performance of more complex algorithms for certain
emotion detection tasks [8].

Feature engineering has played a crucial role in the success of traditional machine
learning approaches for emotion detection. Beyond basic bag-of-words and TF-IDF
representations, researchers have explored diverse feature sets including part-of-speech
patterns, syntactic dependencies, sentiment lexicon scores, negation handling, and emotion-
specific word embeddings [18]. N-gram features capturing multi-word expressions have
proven particularly valuable for emotion classification, as emotional content often manifests
through phrasal constructions rather than individual words. Character-level n-grams provide
additional robustness to spelling variations and out-of-vocabulary terms common in social
media text [19].
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The emergence of word embeddings revolutionized feature representation in natural
language processing by enabling dense vector representations that encode semantic
relationships learned from large text corpora. Word2Vec and GloVe embeddings have been
widely adopted for emotion detection tasks, either as standalone features or in combination
with traditional representations [20]. These distributed representations capture semantic
similarities between emotionally related terms, enabling models to generalize beyond exact
keyword matches. However, static word embeddings fail to account for polysemy and context-
dependent meaning, motivating the development of contextualized representations [21].

Deep learning approaches have achieved remarkable success in emotion detection tasks
through the development of neural architectures capable of automatically learning hierarchical
feature representations. Convolutional Neural Networks have been applied to text
classification by treating sentences as sequential data and learning local patterns through
convolution operations [22]. Recurrent Neural Networks, particularly Long Short-Term
Memory and Gated Recurrent Unit variants, explicitly model sequential dependencies in text,
capturing contextual information crucial for understanding emotional content [23]. Attention
mechanisms further enhance these architectures by enabling models to focus on emotionally
salient words and phrases while processing input sequences [24].

Transformer-based models represent the current state-of-the-art for numerous natural
language processing tasks including emotion detection. BERT and its variants leverage
bidirectional self-attention mechanisms and masked language modeling pretraining to learn
rich contextual representations that encode both semantic and syntactic information [7]. Fine-
tuning pretrained BERT models on emotion-labeled datasets has yielded exceptional
performance across multiple benchmarks, often surpassing human-level agreement in emotion
annotation tasks [25]. RoBERTa, ALBERT, and DistilBERT variants offer improvements in
training efficiency, model compression, and computational requirements while maintaining
strong performance [26].

Domain-specific challenges in emotion detection have motivated specialized research
addressing particular textual characteristics and application contexts. Social media text
presents unique difficulties including informal language, spelling variations, abbreviations,
emoticons, and hashtags that carry emotional information [27]. Researchers have developed
preprocessing strategies and domain-adapted models to handle these characteristics while
preserving emotionally relevant features. Multimodal emotion recognition integrates textual
analysis with acoustic and visual information from audio and video data, enabling more
comprehensive emotion understanding in multimedia content [28].

Evaluation methodologies for emotion detection systems have evolved to address the
inherent subjectivity in emotion annotation and the class imbalance common in real-world
datasets. Inter-annotator agreement measures such as Cohen's kappa and Fleiss' kappa
quantify the reliability of emotion labels, though substantial disagreement often exists even
among expert annotators [29]. Researchers have explored probabilistic annotation frameworks
that preserve label uncertainty and multi-label classification approaches that accommodate the
simultaneous expression of multiple emotions in text. Class imbalance mitigation strategies
including oversampling, undersampling, and class-weighted loss functions have been
investigated to improve model performance on minority emotion categories [30].

Benchmark datasets have played a crucial role in advancing emotion detection research
by providing standardized evaluation protocols and enabling systematic comparison of
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different approaches. The SemEval shared tasks have fostered community-wide collaboration
on emotion analysis challenges, establishing common evaluation frameworks and promoting
reproducible research [18]. The GoEmotions dataset represents a significant contribution by
providing fine-grained emotion annotations for Reddit comments across 27 emotional
categories, enabling research on subtle emotional distinctions. However, concerns regarding
annotation quality, dataset bias, and limited ecological validity continue to motivate
development of improved data collection and annotation methodologies.

The present work contributes to this rich research landscape by conducting a systematic
comparison of classical machine learning algorithms for multi-class emotion detection across
eleven emotional categories. While much recent research has focused on deep learning
approaches, this study demonstrates that properly configured traditional methods can achieve
competitive performance while offering advantages in computational efficiency,
interpretability, and deployment simplicity. The comprehensive evaluation framework
encompassing accuracy, precision, recall, Fl-score, cross-validation analysis, and detailed
confusion matrix examination provides insights into the strengths and limitations of different
algorithmic approaches for emotion classification tasks.

3. METHODOLOGY

3.1. Dataset Description

The experimental investigation employs a comprehensive emotion detection dataset
comprising approximately 106,000 sentences, each annotated with its corresponding emotional
label [41]. This dataset represents a balanced corpus specifically designed for natural language
processing tasks utilizing transformer-based architectures. The corpus was constructed
through the strategic integration of three distinct emotion datasets to address the substantial
data requirements characteristic of deep learning models, particularly those based on the
transformer architecture. The dataset encompasses eleven distinct emotional categories,
providing granular classification capability for nuanced emotion recognition tasks.

The dataset exhibits several notable characteristics that enhance its suitability for emotion
detection research. All textual entries have undergone preprocessing to remove usernames and
uniform resource locators, ensuring that the models focus exclusively on emotional content
rather than user-specific or external reference information. Furthermore, the preprocessing
protocol preserved hashtag content by removing only the hash symbol while retaining the
associated text, recognizing that hashtags frequently convey significant emotional information
[41]. The dataset contains no missing values, maintaining complete data integrity across all
observations. This carefully curated corpus enables robust model training without the risk of
overfitting that would typically occur with smaller datasets, while providing sufficient
diversity to support generalization across various emotional expressions in natural language.

3.2. Preprocessing Pipeline

The preprocessing methodology implements a systematic approach to transform raw
textual data into numerical representations suitable for machine learning algorithms. The
process begins with label encoding, where the eleven categorical emotion labels are converted
to numerical indices using scikit-learn's LabelEncoder class [42]. This transformation enables
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computational processing while preserving the categorical nature of the target variable
throughout the analysis.

Text preprocessing constitutes a critical component of the feature extraction pipeline.
Each sentence undergoes conversion to lowercase to ensure case-insensitive processing,
followed by whitespace normalization to eliminate extraneous spacing. The preprocessing
function retains alphanumeric characters along with basic punctuation marks including
periods, commas, exclamation points, and question marks, as these elements frequently carry
emotional significance in written communication [43]. The system implements a token limit of
one hundred words per sentence to manage computational complexity while preserving the
essential emotional content of each text sample.

Feature extraction employs Term Frequency-Inverse Document Frequency vectorization
with carefully optimized parameters [44]. The vectorizer generates a feature space of three
thousand dimensions, capturing the most informative terms across the corpus. The n-gram
range extends from unigrams to trigrams, enabling the model to capture both individual word
meanings and multi-word emotional expressions. Document frequency thresholds restrict
features to terms appearing in at least three documents but no more than eighty-five percent of
documents, effectively filtering both rare noise terms and overly common words that provide
minimal discriminative information. The implementation includes English stop word removal
and sublinear term frequency scaling to prevent highly frequent terms from dominating the
feature space [45]. This vectorization strategy produces a sparse matrix representation where
each sentence is encoded as a high-dimensional vector suitable for classification algorithms.

The dataset undergoes stratified partitioning into training and testing subsets using an
eighty-twenty split ratio. The stratification procedure ensures that the class distribution
remains consistent across both partitions, preventing potential bias in model evaluation that
could arise from imbalanced sampling [42]. The training subset, comprising approximately
84,800 samples, supports model parameter estimation, while the testing subset of
approximately 21,200 samples enables unbiased performance evaluation on previously unseen
data.

3.3. Classification Models

The experimental framework incorporates three distinct machine learning algorithms,
each selected for its unique approach to classification and proven effectiveness in text analysis
tasks. Logistic Regression serves as a strong linear baseline, implementing multinomial
classification with L2 regularization and a regularization parameter of 1.5 [46]. The model
employs balanced class weights to account for any residual class imbalances and utilizes the
limited-memory Broyden-Fletcher-Goldfarb-Shanno optimization algorithm with a maximum
of two thousand iterations to ensure convergence. The multinomial formulation enables direct
multi-class probability estimation without requiring one-versus-rest decomposition.

Random Forest classification implements an ensemble of one hundred fifty decision trees
with a maximum depth of thirty levels [47]. The algorithm employs bootstrap aggregation to
reduce variance while maintaining low bias through the use of deep trees. Minimum sample
requirements of four samples for splitting and two samples for leaf nodes prevent excessive
overfitting while allowing the model to capture complex decision boundaries. The Random
Forest approach proves particularly effective for text classification due to its ability to handle
high-dimensional sparse features and its inherent feature importance estimation capabilities.
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Naive Bayes classification implements a probabilistic approach based on Bayes' theorem
with strong independence assumptions between features [48]. The multinomial variant proves
particularly suitable for text classification tasks where features represent term frequencies. The
smoothing parameter alpha is set to 0.1, applying Laplace smoothing to handle zero
probabilities for unseen term-class combinations. Despite its simplifying assumptions, Naive
Bayes often achieves competitive performance in text classification while offering
computational efficiency and interpretability through its explicit probability modeling.

All models undergo training using parallel processing capabilities where applicable to
expedite the experimental workflow. The training process includes comprehensive timing
measurements to assess computational efficiency alongside predictive performance. Each
model's hyperparameters were selected based on preliminary experiments and established best
practices for text classification tasks, balancing model complexity with generalization
capability.

3.4. Evaluation Metrics

The evaluation framework implements a comprehensive suite of metrics to assess model
performance across multiple dimensions, ensuring robust characterization of classification
capability. Accuracy serves as the primary metric, quantifying the proportion of correct
predictions across all emotion categories. While accuracy provides an intuitive overall
performance measure, the evaluation extends beyond this single metric to capture nuanced
aspects of model behavior.

Precision, recall, and F1-score are calculated for each emotion category and aggregated
using weighted averaging to account for class frequency in the test set [42]. Precision measures
the proportion of correct predictions among all instances predicted as a particular emotion,
quantifying the model's ability to avoid false positive errors. Recall measures the proportion of
actual instances of each emotion that the model successfully identifies, quantifying
completeness of detection. The F1-score represents the harmonic mean of precision and recall,
providing a balanced measure that penalizes extreme trade-offs between these complementary
metrics. The weighted averaging scheme ensures that the aggregate metrics appropriately
reflect performance across all emotion categories proportional to their representation in the test
data.

Cross-validation analysis employs a five-fold stratified approach to assess model stability
and generalization capability [49]. The training data is partitioned into five equal subsets while
maintaining class distribution within each fold. Each model undergoes training on four folds
and evaluation on the remaining fold, with this process repeated five times such that each fold
serves once as the validation set. The cross-validation procedure yields five performance
estimates for each model, from which mean and standard deviation statistics are computed.
The mean cross-validation score provides an estimate of expected performance on unseen data,
while the standard deviation quantifies prediction stability across different training subsets.
Models exhibiting low standard deviation demonstrate consistent behavior regardless of
specific training samples, suggesting robust generalization capability.

The confusion matrix provides detailed insight into classification patterns by tabulating
predicted labels against true labels for all test samples [50]. This matrix reveals not only overall
accuracy but also specific misclassification patterns, identifying which emotion pairs are most
frequently confused. The analysis includes both absolute confusion matrices displaying raw
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prediction counts and normalized confusion matrices presenting proportions, facilitating
interpretation across emotion categories with varying frequencies. Systematic patterns in the
confusion matrix often reveal semantically meaningful relationships, such as higher confusion
rates between emotions of similar valence or intensity.

Per-class performance metrics enable identification of emotions that present particular
classification challenges. Computing precision, recall, and F1-score separately for each emotion
category reveals whether the model performs uniformly across all emotions or exhibits
strengths and weaknesses for specific categories. This granular analysis proves valuable for
understanding model limitations and guiding future improvements, such as targeted data
collection for underperforming categories or specialized feature engineering for emotionally
ambiguous expressions.

Training time measurements quantify the computational efficiency of each algorithm,
providing practical insights for deployment scenarios where training time constraints may
influence model selection [42]. While predictive performance remains the primary
consideration, computational requirements often play a crucial role in determining feasibility
for applications requiring frequent retraining or operation under resource constraints. The
comprehensive evaluation framework thus balances multiple considerations, enabling
informed model selection based on the specific requirements and constraints of the target
application.

4. RESULTS AND DISCUSSION

The experimental evaluation of three machine learning algorithms for emotion detection
yielded distinct performance characteristics across multiple evaluation metrics, as illustrated in
Figure 1. Logistic Regression emerged as the superior model, achieving an overall accuracy of
79.90% on the test dataset comprising approximately 21,200 samples. This performance
substantially exceeded both Random Forest, which attained 75.32% accuracy, and Naive Bayes,
which achieved 69.01% accuracy. The consistent superiority of Logistic Regression across all
evaluation metrics demonstrates its effectiveness for multi-class emotion classification in text
data.

Model Performance Comparison

Maive Layes 0.6901

Random Farcst 0.7532

Logistic Regression 07950

[k 0z 04 PR 08 10
Accuracy

Figure 1. Comparative analysis of model accuracy across three classification algorithms. Logistic Regression
achieved the highest performance at 79.90%, followed by Random Forest and Naive Bayes.

The comprehensive performance analysis presented in Figure 2 reveals that Logistic
Regression not only achieved the highest accuracy but also demonstrated balanced
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performance across precision, recall, and Fl-score metrics. The model attained a weighted
precision of 81.18%, indicating strong reliability in its positive predictions, while maintaining a
recall of 79.90%, demonstrating effective identification of emotion instances across all
categories. The F1-score of 80.27 % reflects the harmonious balance between precision and recall,
suggesting that the model avoids extreme trade-offs between false positives and false negatives.
Random Forest exhibited notably higher precision at 85.38% compared to its recall of 75.32%,
indicating a conservative prediction strategy that prioritizes accuracy over completeness. This
precision-recall gap of approximately ten percentage points suggests the Random Forest model
requires higher confidence thresholds before classifying instances, resulting in missed
detections for ambiguous cases. Naive Bayes demonstrated the most balanced precision-recall
relationship at approximately 69%, though at lower absolute performance levels than the other
models.

Performance Metrics Across Models

Score

& &
Gl &
<

&

&
a
o

Models

Figure 2. Performance metrics comparison shows accuracy, precision, recall, and F1-score across models. Logistic
Regression demonstrates balanced performance across all metrics while Random Forest exhibits higher precision
than recall.

The cross-validation analysis presented in Figure 3 provides critical insights into model
stability and generalization capability. Logistic Regression achieved a mean cross-validation
score of 79.4% with a standard deviation of only 0.4%, demonstrating remarkable consistency
across different data partitions. This minimal variance indicates robust performance
independent of specific training samples, suggesting strong generalization to unseen data.
Random Forest obtained a cross-validation score of 75.2% with comparable stability at 0.4%
standard deviation, while Naive Bayes achieved 67.7% with slightly higher variance at 0.5%.
The tight error bars across all models indicate that performance differences reflect genuine
algorithmic characteristics rather than random variation or overfitting to particular data
subsets.
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5-Fold Cross-Validation Results

0.794x0.004
0.752+0.004

0.677:0.005

Cross-Validation Score

Model

Figure 3. Five-fold cross-validation results with error bars indicating standard deviation across folds. All models
demonstrate stable performance with minimal variance, confirming robust generalization capability.

The detailed confusion matrix analysis for Logistic Regression, depicted in Figures 4 and
5, reveals nuanced patterns in classification performance across the eleven emotion categories.
The normalized confusion matrix in Figure 5 demonstrates that certain emotions achieve
exceptionally high classification accuracy, with enthusiasm reaching 90.45% correct
classification, love at 89.15%, neutral at 83.95%, fun at 82.45%, and anger at 82.80%. These high-
performing categories typically possess distinctive linguistic markers that facilitate reliable
detection. Conversely, emotions such as empty, neutral, and sadness exhibit more substantial
confusion with related categories. The empty emotion shows notable misclassification with
neutral instances at 14.79%, reflecting the semantic similarity between these low-arousal states.
Happiness demonstrates confusion with surprise at 7.60% and sadness at 7.30%, suggesting
challenges in distinguishing emotions with overlapping expressive patterns.

The per-class performance analysis illustrated in Figure 6 reveals significant variation in
detection capability across emotion categories. Enthusiasm emerges as the most reliably
detected emotion, achieving precision, recall, and F1-scores all exceeding 90%. This exceptional
performance likely stems from distinctive vocabulary associated with enthusiastic expression.
Conversely, empty, neutral, and sadness present greater classification challenges, with F1-
scores ranging from 65% to 70%. The lower performance for these categories may reflect their
linguistic subtlety and overlap with multiple other emotional states. Anger, love, and relief
demonstrate strong balanced performance with Fl-scores approaching 90%, indicating the
presence of characteristic linguistic features that enable reliable identification.

The computational efficiency analysis presented in Figure 7 reveals substantial
differences in training requirements across algorithms. Naive Bayes demonstrates remarkable
efficiency with training completion in merely 0.03 seconds, making it highly suitable for
applications requiring frequent model updates or operating under severe computational
constraints. Random Forest requires moderate computational resources at 4.92 seconds,
representing a reasonable balance between performance and efficiency. Logistic Regression,
despite achieving the highest predictive performance, demands the longest training time at
16.69 seconds due to its iterative optimization process over the high-dimensional feature space.
However, this training duration remains acceptable for most practical applications, particularly
given that training occurs offline and prediction latency remains minimal across all models.
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Figure 4. Confusion matrix for Logistic Regression showing absolute prediction counts across eleven emotion

categories. Diagonal elements represent correct classifications while off-diagonal elements indicate
misclassification patterns.
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Figure 5. Normalized confusion matrix displaying classification accuracy as percentages for each emotion
category. High-performing emotions include enthusiasm (90.45%), love (89.15%), and neutral (83.95%).
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Figure 6. Per-class performance metrics showing precision, recall, and F1-score for each emotion category.

Enthusiasm achieves the highest performance while empty and neutral present greater classification challenges.
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Model Training Time Comparison

Maive Bayes | 0.03s

Random Forest 4925

Logistic Regression 16,695

a 2 4 [
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Training Time (seconds)

Figure 7. Training time comparison across three classification algorithms measured in seconds. Naive Bayes
exhibits exceptional computational efficiency while Logistic Regression requires longer training duration.
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The overall results demonstrate that classical machine learning approaches, when
properly configured with optimized preprocessing and feature extraction pipelines, achieve
strong performance for emotion detection tasks. Logistic Regression's success validates the
hypothesis that linear models can effectively capture emotion-relevant patterns in TF-IDF
transformed text features. The model's ability to achieve approximately 80% accuracy across
eleven distinct emotion categories represents substantial improvement over random baseline
performance of approximately 9%, demonstrating genuine learning of emotional semantics
from linguistic features.

5. CONCLUSION

This study demonstrates that classical machine learning algorithms can achieve strong
performance in multi-class emotion detection across eleven emotional categories using a
balanced dataset of 106,000 textual instances. Among the evaluated models, Logistic Regression
exhibited the highest performance, attaining an accuracy of 79.90%, and consistently
outperforming both Random Forest and Naive Bayes classifiers. Cross-validation results
further confirmed the robustness and stability of the models, with Logistic Regression
achieving a mean score of 79.4% and a standard deviation of only 0.4%, indicating reliable
generalization across different training subsets.

Emotion-wise performance analysis revealed that categories with clearer linguistic
markers such as enthusiasm, love, fun, neutral, and anger were classified with higher reliability,
whereas low-arousal emotions, including sadness and empty, posed greater classification
challenges due to semantic overlap. Although Logistic Regression required a longer training
time compared to the other models, its superior predictive performance justifies the additional
computational cost.

Overall, the findings confirm that optimized classical machine learning particularly
Logistic Regression offers an accurate, interpretable, and computationally efficient solution for
fine-grained emotion classification, with significant potential for practical applications in areas
such as mental health monitoring, customer service analytics, social media analysis, and
educational technologies.
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