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ABSTRACT — Emotion detection in textual data represents a critical challenge in natural language processing 
with applications in mental health monitoring, customer sentiment analysis, and human-computer 
interaction. This study investigates three classical machine learning algorithms for multi-class emotion 
classification across eleven emotional categories using a balanced dataset of approximately 106,000 annotated 
sentences. The research employs Term Frequency-Inverse Document Frequency vectorization with trigram 
support and 3,000-dimensional feature space. Logistic Regression, Random Forest, and Naive Bayes classifiers 
were evaluated using comprehensive metrics including accuracy, precision, recall, F1-score, and five-fold 
cross-validation. Results demonstrate that Logistic Regression achieved superior performance with 79.90% 
accuracy, 81.18% precision, and 80.27% F1-score, substantially exceeding Random Forest at 75.32% and Naive 
Bayes at 69.01%. Cross-validation analysis revealed remarkable stability with standard deviations below 0.5%, 
confirming robust generalization. Per-class analysis identified enthusiasm, love, and neutral as most reliably 
detected emotions exceeding 83% accuracy, while empty and sadness presented greater challenges. The 
findings validate that classical machine learning approaches with proper feature engineering achieve 
competitive performance for fine-grained emotion detection while offering advantages in computational 
efficiency, interpretability, and deployment simplicity. 
 
Keywords —  Emotion detection, text classification, machine learning, Logistic Regression, Random Forest, 
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1. INTRODUCTION 

Emotion detection in textual data represents a fundamental challenge in natural language 

processing with profound implications for human-computer interaction, mental health 

monitoring, customer sentiment analysis, and social media analytics. The ability to 

automatically identify and classify emotional states expressed through written language 

enables machines to better understand human communication, facilitating more empathetic 

and context-aware artificial intelligence systems. As digital communication continues to 

dominate human interaction through social media platforms, messaging applications, and 

online forums, the volume of emotion-laden text data has grown exponentially, creating both 

opportunities and challenges for automated emotion recognition systems [1]. 

Traditional approaches to emotion analysis have focused primarily on polarity-based 

sentiment classification, distinguishing between positive, negative, and neutral sentiments. 

However, this coarse-grained categorization fails to capture the rich emotional landscape 

inherent in human communication, where discrete emotions such as joy, sadness, anger, fear, 

surprise, and disgust manifest through distinct linguistic patterns and contextual cues [2]. The 
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transition from simple sentiment analysis to fine-grained emotion detection requires 

sophisticated natural language processing techniques capable of distinguishing subtle 

differences in emotional expression while maintaining robust performance across diverse 

textual contexts and communication styles [3]. 

Machine learning approaches have emerged as the predominant methodology for 

emotion detection tasks, leveraging large annotated corpora to learn statistical patterns that 

characterize different emotional states. Classical machine learning algorithms, including 

Support Vector Machines, Random Forests, and Naive Bayes classifiers, have demonstrated 

considerable success when combined with carefully engineered features such as bag-of-words 

representations, n-grams, and lexicon-based emotional indicators [4]. These traditional 

methods benefit from interpretability and computational efficiency, making them particularly 

suitable for applications requiring transparent decision-making processes or operating under 

resource constraints [5]. 

The advent of deep learning has revolutionized emotion detection capabilities through 

the development of neural architectures that automatically learn hierarchical feature 

representations from raw text data. Recurrent Neural Networks, particularly Long Short-Term 

Memory networks, have shown exceptional performance in capturing sequential dependencies 

and contextual information crucial for understanding emotional content [6]. More recently, 

transformer-based models such as BERT and its variants have achieved state-of-the-art 

performance across numerous natural language processing tasks, including emotion 

classification, by leveraging pre-trained language representations that encode rich semantic 

and syntactic knowledge [7]. 

Despite significant advances in deep learning methodologies, classical machine learning 

approaches remain highly relevant for emotion detection applications, particularly in scenarios 

involving limited computational resources, smaller datasets, or requirements for model 

interpretability. Traditional algorithms often provide competitive performance when 

combined with sophisticated feature engineering and appropriate preprocessing techniques, 

while offering advantages in training efficiency and transparency [8]. Furthermore, classical 

methods serve as essential baselines for evaluating more complex architectures and provide 

valuable insights into the fundamental characteristics of emotion-discriminative features in text 

data [9]. 

The present study investigates the application of three classical machine learning 

algorithms for multi-class emotion detection across eleven distinct emotional categories. The 

research employs a comprehensive emotion dataset comprising approximately 106,000 

annotated sentences, specifically curated to support transformer-based architectures while 

maintaining balance across emotional classes [10]. By implementing Logistic Regression, 

Random Forest, and Naive Bayes classifiers with optimized preprocessing pipelines and Term 

Frequency-Inverse Document Frequency vectorization, this work demonstrates that classical 

approaches can achieve robust performance for fine-grained emotion classification tasks. The 

evaluation framework encompasses multiple performance metrics including accuracy, 

precision, recall, F1-score, and cross-validation analysis, providing comprehensive insights into 

model behavior and classification patterns across different emotional categories. 
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2. RELATED WORK 

The field of emotion detection in text has evolved significantly over the past two decades, 

progressing from rule-based systems and lexicon approaches to sophisticated machine learning 

and deep learning methodologies. Early research in affective computing established theoretical 

foundations for computational emotion recognition, drawing upon psychological models such 

as Ekman's basic emotions and Russell's circumplex model to define categorical and 

dimensional representations of emotional states [11]. These psychological frameworks have 

informed the design of emotion taxonomies and annotation schemes used in computational 

studies, though debates continue regarding the most appropriate emotional representation for 

natural language processing applications [12]. 

Lexicon-based approaches represented the first wave of automated emotion detection 

systems, relying on manually curated dictionaries that associate words and phrases with 

specific emotional categories or valence-arousal-dominance ratings. The Affective Norms for 

English Words database and the NRC Emotion Lexicon exemplify influential resources that 

have enabled rule-based emotion classification through keyword matching and aggregation 

strategies [13]. While lexicon methods offer interpretability and require no training data, they 

suffer from limited coverage of domain-specific vocabulary, inability to handle context-

dependent emotional expressions, and challenges in processing figurative language such as 

sarcasm and irony [14]. 

Traditional machine learning approaches emerged as researchers recognized the 

limitations of purely lexical methods and sought data-driven solutions capable of learning 

emotional patterns from annotated corpora. Support Vector Machines gained prominence for 

text classification tasks due to their effectiveness in high-dimensional feature spaces and strong 

generalization capabilities [15]. Studies demonstrated that linear SVMs combined with TF-IDF 

features could achieve competitive performance for emotion classification while maintaining 

computational efficiency. Random Forests and ensemble methods have similarly shown 

promise by combining multiple decision trees to capture complex non-linear relationships in 

textual features while providing robustness against overfitting [16]. 

Naive Bayes classifiers, despite their simplifying independence assumptions, have 

demonstrated surprisingly strong performance for text classification tasks including emotion 

detection. The multinomial variant proves particularly suitable for document classification 

problems where features represent term frequencies, offering computational efficiency and 

interpretability that facilitate deployment in resource-constrained environments [17]. 

Comparative studies have shown that proper feature engineering and preprocessing can enable 

Naive Bayes to approach or exceed the performance of more complex algorithms for certain 

emotion detection tasks [8]. 

Feature engineering has played a crucial role in the success of traditional machine 

learning approaches for emotion detection. Beyond basic bag-of-words and TF-IDF 

representations, researchers have explored diverse feature sets including part-of-speech 

patterns, syntactic dependencies, sentiment lexicon scores, negation handling, and emotion-

specific word embeddings [18]. N-gram features capturing multi-word expressions have 

proven particularly valuable for emotion classification, as emotional content often manifests 

through phrasal constructions rather than individual words. Character-level n-grams provide 

additional robustness to spelling variations and out-of-vocabulary terms common in social 

media text [19]. 
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The emergence of word embeddings revolutionized feature representation in natural 

language processing by enabling dense vector representations that encode semantic 

relationships learned from large text corpora. Word2Vec and GloVe embeddings have been 

widely adopted for emotion detection tasks, either as standalone features or in combination 

with traditional representations [20]. These distributed representations capture semantic 

similarities between emotionally related terms, enabling models to generalize beyond exact 

keyword matches. However, static word embeddings fail to account for polysemy and context-

dependent meaning, motivating the development of contextualized representations [21]. 

Deep learning approaches have achieved remarkable success in emotion detection tasks 

through the development of neural architectures capable of automatically learning hierarchical 

feature representations. Convolutional Neural Networks have been applied to text 

classification by treating sentences as sequential data and learning local patterns through 

convolution operations [22]. Recurrent Neural Networks, particularly Long Short-Term 

Memory and Gated Recurrent Unit variants, explicitly model sequential dependencies in text, 

capturing contextual information crucial for understanding emotional content [23]. Attention 

mechanisms further enhance these architectures by enabling models to focus on emotionally 

salient words and phrases while processing input sequences [24]. 

Transformer-based models represent the current state-of-the-art for numerous natural 

language processing tasks including emotion detection. BERT and its variants leverage 

bidirectional self-attention mechanisms and masked language modeling pretraining to learn 

rich contextual representations that encode both semantic and syntactic information [7]. Fine-

tuning pretrained BERT models on emotion-labeled datasets has yielded exceptional 

performance across multiple benchmarks, often surpassing human-level agreement in emotion 

annotation tasks [25]. RoBERTa, ALBERT, and DistilBERT variants offer improvements in 

training efficiency, model compression, and computational requirements while maintaining 

strong performance [26]. 

Domain-specific challenges in emotion detection have motivated specialized research 

addressing particular textual characteristics and application contexts. Social media text 

presents unique difficulties including informal language, spelling variations, abbreviations, 

emoticons, and hashtags that carry emotional information [27]. Researchers have developed 

preprocessing strategies and domain-adapted models to handle these characteristics while 

preserving emotionally relevant features. Multimodal emotion recognition integrates textual 

analysis with acoustic and visual information from audio and video data, enabling more 

comprehensive emotion understanding in multimedia content [28]. 

Evaluation methodologies for emotion detection systems have evolved to address the 

inherent subjectivity in emotion annotation and the class imbalance common in real-world 

datasets. Inter-annotator agreement measures such as Cohen's kappa and Fleiss' kappa 

quantify the reliability of emotion labels, though substantial disagreement often exists even 

among expert annotators [29]. Researchers have explored probabilistic annotation frameworks 

that preserve label uncertainty and multi-label classification approaches that accommodate the 

simultaneous expression of multiple emotions in text. Class imbalance mitigation strategies 

including oversampling, undersampling, and class-weighted loss functions have been 

investigated to improve model performance on minority emotion categories [30]. 

Benchmark datasets have played a crucial role in advancing emotion detection research 

by providing standardized evaluation protocols and enabling systematic comparison of 
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different approaches. The SemEval shared tasks have fostered community-wide collaboration 

on emotion analysis challenges, establishing common evaluation frameworks and promoting 

reproducible research [18]. The GoEmotions dataset represents a significant contribution by 

providing fine-grained emotion annotations for Reddit comments across 27 emotional 

categories, enabling research on subtle emotional distinctions. However, concerns regarding 

annotation quality, dataset bias, and limited ecological validity continue to motivate 

development of improved data collection and annotation methodologies. 

The present work contributes to this rich research landscape by conducting a systematic 

comparison of classical machine learning algorithms for multi-class emotion detection across 

eleven emotional categories. While much recent research has focused on deep learning 

approaches, this study demonstrates that properly configured traditional methods can achieve 

competitive performance while offering advantages in computational efficiency, 

interpretability, and deployment simplicity. The comprehensive evaluation framework 

encompassing accuracy, precision, recall, F1-score, cross-validation analysis, and detailed 

confusion matrix examination provides insights into the strengths and limitations of different 

algorithmic approaches for emotion classification tasks. 

3. METHODOLOGY 

3.1. Dataset Description 

The experimental investigation employs a comprehensive emotion detection dataset 

comprising approximately 106,000 sentences, each annotated with its corresponding emotional 

label [41]. This dataset represents a balanced corpus specifically designed for natural language 

processing tasks utilizing transformer-based architectures. The corpus was constructed 

through the strategic integration of three distinct emotion datasets to address the substantial 

data requirements characteristic of deep learning models, particularly those based on the 

transformer architecture. The dataset encompasses eleven distinct emotional categories, 

providing granular classification capability for nuanced emotion recognition tasks. 

The dataset exhibits several notable characteristics that enhance its suitability for emotion 

detection research. All textual entries have undergone preprocessing to remove usernames and 

uniform resource locators, ensuring that the models focus exclusively on emotional content 

rather than user-specific or external reference information. Furthermore, the preprocessing 

protocol preserved hashtag content by removing only the hash symbol while retaining the 

associated text, recognizing that hashtags frequently convey significant emotional information 

[41]. The dataset contains no missing values, maintaining complete data integrity across all 

observations. This carefully curated corpus enables robust model training without the risk of 

overfitting that would typically occur with smaller datasets, while providing sufficient 

diversity to support generalization across various emotional expressions in natural language. 

3.2. Preprocessing Pipeline 

The preprocessing methodology implements a systematic approach to transform raw 

textual data into numerical representations suitable for machine learning algorithms. The 

process begins with label encoding, where the eleven categorical emotion labels are converted 

to numerical indices using scikit-learn's LabelEncoder class [42]. This transformation enables 
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computational processing while preserving the categorical nature of the target variable 

throughout the analysis. 

Text preprocessing constitutes a critical component of the feature extraction pipeline. 

Each sentence undergoes conversion to lowercase to ensure case-insensitive processing, 

followed by whitespace normalization to eliminate extraneous spacing. The preprocessing 

function retains alphanumeric characters along with basic punctuation marks including 

periods, commas, exclamation points, and question marks, as these elements frequently carry 

emotional significance in written communication [43]. The system implements a token limit of 

one hundred words per sentence to manage computational complexity while preserving the 

essential emotional content of each text sample. 

Feature extraction employs Term Frequency-Inverse Document Frequency vectorization 

with carefully optimized parameters [44]. The vectorizer generates a feature space of three 

thousand dimensions, capturing the most informative terms across the corpus. The n-gram 

range extends from unigrams to trigrams, enabling the model to capture both individual word 

meanings and multi-word emotional expressions. Document frequency thresholds restrict 

features to terms appearing in at least three documents but no more than eighty-five percent of 

documents, effectively filtering both rare noise terms and overly common words that provide 

minimal discriminative information. The implementation includes English stop word removal 

and sublinear term frequency scaling to prevent highly frequent terms from dominating the 

feature space [45]. This vectorization strategy produces a sparse matrix representation where 

each sentence is encoded as a high-dimensional vector suitable for classification algorithms. 

The dataset undergoes stratified partitioning into training and testing subsets using an 

eighty-twenty split ratio. The stratification procedure ensures that the class distribution 

remains consistent across both partitions, preventing potential bias in model evaluation that 

could arise from imbalanced sampling [42]. The training subset, comprising approximately 

84,800 samples, supports model parameter estimation, while the testing subset of 

approximately 21,200 samples enables unbiased performance evaluation on previously unseen 

data. 

3.3. Classification Models 

The experimental framework incorporates three distinct machine learning algorithms, 

each selected for its unique approach to classification and proven effectiveness in text analysis 

tasks. Logistic Regression serves as a strong linear baseline, implementing multinomial 

classification with L2 regularization and a regularization parameter of 1.5 [46]. The model 

employs balanced class weights to account for any residual class imbalances and utilizes the 

limited-memory Broyden-Fletcher-Goldfarb-Shanno optimization algorithm with a maximum 

of two thousand iterations to ensure convergence. The multinomial formulation enables direct 

multi-class probability estimation without requiring one-versus-rest decomposition. 

Random Forest classification implements an ensemble of one hundred fifty decision trees 

with a maximum depth of thirty levels [47]. The algorithm employs bootstrap aggregation to 

reduce variance while maintaining low bias through the use of deep trees. Minimum sample 

requirements of four samples for splitting and two samples for leaf nodes prevent excessive 

overfitting while allowing the model to capture complex decision boundaries. The Random 

Forest approach proves particularly effective for text classification due to its ability to handle 

high-dimensional sparse features and its inherent feature importance estimation capabilities. 
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Naive Bayes classification implements a probabilistic approach based on Bayes' theorem 

with strong independence assumptions between features [48]. The multinomial variant proves 

particularly suitable for text classification tasks where features represent term frequencies. The 

smoothing parameter alpha is set to 0.1, applying Laplace smoothing to handle zero 

probabilities for unseen term-class combinations. Despite its simplifying assumptions, Naive 

Bayes often achieves competitive performance in text classification while offering 

computational efficiency and interpretability through its explicit probability modeling. 

All models undergo training using parallel processing capabilities where applicable to 

expedite the experimental workflow. The training process includes comprehensive timing 

measurements to assess computational efficiency alongside predictive performance. Each 

model's hyperparameters were selected based on preliminary experiments and established best 

practices for text classification tasks, balancing model complexity with generalization 

capability. 

3.4. Evaluation Metrics 

The evaluation framework implements a comprehensive suite of metrics to assess model 

performance across multiple dimensions, ensuring robust characterization of classification 

capability. Accuracy serves as the primary metric, quantifying the proportion of correct 

predictions across all emotion categories. While accuracy provides an intuitive overall 

performance measure, the evaluation extends beyond this single metric to capture nuanced 

aspects of model behavior. 

Precision, recall, and F1-score are calculated for each emotion category and aggregated 

using weighted averaging to account for class frequency in the test set [42]. Precision measures 

the proportion of correct predictions among all instances predicted as a particular emotion, 

quantifying the model's ability to avoid false positive errors. Recall measures the proportion of 

actual instances of each emotion that the model successfully identifies, quantifying 

completeness of detection. The F1-score represents the harmonic mean of precision and recall, 

providing a balanced measure that penalizes extreme trade-offs between these complementary 

metrics. The weighted averaging scheme ensures that the aggregate metrics appropriately 

reflect performance across all emotion categories proportional to their representation in the test 

data. 

Cross-validation analysis employs a five-fold stratified approach to assess model stability 

and generalization capability [49]. The training data is partitioned into five equal subsets while 

maintaining class distribution within each fold. Each model undergoes training on four folds 

and evaluation on the remaining fold, with this process repeated five times such that each fold 

serves once as the validation set. The cross-validation procedure yields five performance 

estimates for each model, from which mean and standard deviation statistics are computed. 

The mean cross-validation score provides an estimate of expected performance on unseen data, 

while the standard deviation quantifies prediction stability across different training subsets. 

Models exhibiting low standard deviation demonstrate consistent behavior regardless of 

specific training samples, suggesting robust generalization capability. 

The confusion matrix provides detailed insight into classification patterns by tabulating 

predicted labels against true labels for all test samples [50]. This matrix reveals not only overall 

accuracy but also specific misclassification patterns, identifying which emotion pairs are most 

frequently confused. The analysis includes both absolute confusion matrices displaying raw 
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prediction counts and normalized confusion matrices presenting proportions, facilitating 

interpretation across emotion categories with varying frequencies. Systematic patterns in the 

confusion matrix often reveal semantically meaningful relationships, such as higher confusion 

rates between emotions of similar valence or intensity. 

Per-class performance metrics enable identification of emotions that present particular 

classification challenges. Computing precision, recall, and F1-score separately for each emotion 

category reveals whether the model performs uniformly across all emotions or exhibits 

strengths and weaknesses for specific categories. This granular analysis proves valuable for 

understanding model limitations and guiding future improvements, such as targeted data 

collection for underperforming categories or specialized feature engineering for emotionally 

ambiguous expressions. 

Training time measurements quantify the computational efficiency of each algorithm, 

providing practical insights for deployment scenarios where training time constraints may 

influence model selection [42]. While predictive performance remains the primary 

consideration, computational requirements often play a crucial role in determining feasibility 

for applications requiring frequent retraining or operation under resource constraints. The 

comprehensive evaluation framework thus balances multiple considerations, enabling 

informed model selection based on the specific requirements and constraints of the target 

application. 

4. RESULTS AND DISCUSSION 

The experimental evaluation of three machine learning algorithms for emotion detection 

yielded distinct performance characteristics across multiple evaluation metrics, as illustrated in 

Figure 1. Logistic Regression emerged as the superior model, achieving an overall accuracy of 

79.90% on the test dataset comprising approximately 21,200 samples. This performance 

substantially exceeded both Random Forest, which attained 75.32% accuracy, and Naive Bayes, 

which achieved 69.01% accuracy. The consistent superiority of Logistic Regression across all 

evaluation metrics demonstrates its effectiveness for multi-class emotion classification in text 

data. 

 

 
Figure 1. Comparative analysis of model accuracy across three classification algorithms. Logistic Regression 

achieved the highest performance at 79.90%, followed by Random Forest and Naive Bayes. 

The comprehensive performance analysis presented in Figure 2 reveals that Logistic 

Regression not only achieved the highest accuracy but also demonstrated balanced 
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performance across precision, recall, and F1-score metrics. The model attained a weighted 

precision of 81.18%, indicating strong reliability in its positive predictions, while maintaining a 

recall of 79.90%, demonstrating effective identification of emotion instances across all 

categories. The F1-score of 80.27% reflects the harmonious balance between precision and recall, 

suggesting that the model avoids extreme trade-offs between false positives and false negatives. 

Random Forest exhibited notably higher precision at 85.38% compared to its recall of 75.32%, 

indicating a conservative prediction strategy that prioritizes accuracy over completeness. This 

precision-recall gap of approximately ten percentage points suggests the Random Forest model 

requires higher confidence thresholds before classifying instances, resulting in missed 

detections for ambiguous cases. Naive Bayes demonstrated the most balanced precision-recall 

relationship at approximately 69%, though at lower absolute performance levels than the other 

models. 

 

 
Figure 2. Performance metrics comparison shows accuracy, precision, recall, and F1-score across models. Logistic 
Regression demonstrates balanced performance across all metrics while Random Forest exhibits higher precision 

than recall. 

The cross-validation analysis presented in Figure 3 provides critical insights into model 

stability and generalization capability. Logistic Regression achieved a mean cross-validation 

score of 79.4% with a standard deviation of only 0.4%, demonstrating remarkable consistency 

across different data partitions. This minimal variance indicates robust performance 

independent of specific training samples, suggesting strong generalization to unseen data. 

Random Forest obtained a cross-validation score of 75.2% with comparable stability at 0.4% 

standard deviation, while Naive Bayes achieved 67.7% with slightly higher variance at 0.5%. 

The tight error bars across all models indicate that performance differences reflect genuine 

algorithmic characteristics rather than random variation or overfitting to particular data 

subsets. 
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Figure 3. Five-fold cross-validation results with error bars indicating standard deviation across folds. All models 

demonstrate stable performance with minimal variance, confirming robust generalization capability. 

The detailed confusion matrix analysis for Logistic Regression, depicted in Figures 4 and 

5, reveals nuanced patterns in classification performance across the eleven emotion categories. 

The normalized confusion matrix in Figure 5 demonstrates that certain emotions achieve 

exceptionally high classification accuracy, with enthusiasm reaching 90.45% correct 

classification, love at 89.15%, neutral at 83.95%, fun at 82.45%, and anger at 82.80%. These high-

performing categories typically possess distinctive linguistic markers that facilitate reliable 

detection. Conversely, emotions such as empty, neutral, and sadness exhibit more substantial 

confusion with related categories. The empty emotion shows notable misclassification with 

neutral instances at 14.79%, reflecting the semantic similarity between these low-arousal states. 

Happiness demonstrates confusion with surprise at 7.60% and sadness at 7.30%, suggesting 

challenges in distinguishing emotions with overlapping expressive patterns. 

The per-class performance analysis illustrated in Figure 6 reveals significant variation in 

detection capability across emotion categories. Enthusiasm emerges as the most reliably 

detected emotion, achieving precision, recall, and F1-scores all exceeding 90%. This exceptional 

performance likely stems from distinctive vocabulary associated with enthusiastic expression. 

Conversely, empty, neutral, and sadness present greater classification challenges, with F1-

scores ranging from 65% to 70%. The lower performance for these categories may reflect their 

linguistic subtlety and overlap with multiple other emotional states. Anger, love, and relief 

demonstrate strong balanced performance with F1-scores approaching 90%, indicating the 

presence of characteristic linguistic features that enable reliable identification. 

The computational efficiency analysis presented in Figure 7 reveals substantial 

differences in training requirements across algorithms. Naive Bayes demonstrates remarkable 

efficiency with training completion in merely 0.03 seconds, making it highly suitable for 

applications requiring frequent model updates or operating under severe computational 

constraints. Random Forest requires moderate computational resources at 4.92 seconds, 

representing a reasonable balance between performance and efficiency. Logistic Regression, 

despite achieving the highest predictive performance, demands the longest training time at 

16.69 seconds due to its iterative optimization process over the high-dimensional feature space. 

However, this training duration remains acceptable for most practical applications, particularly 

given that training occurs offline and prediction latency remains minimal across all models. 
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Figure 4. Confusion matrix for Logistic Regression showing absolute prediction counts across eleven emotion 

categories. Diagonal elements represent correct classifications while off-diagonal elements indicate 
misclassification patterns. 

 
Figure 5. Normalized confusion matrix displaying classification accuracy as percentages for each emotion 

category. High-performing emotions include enthusiasm (90.45%), love (89.15%), and neutral (83.95%). 

 

 
Figure 6. Per-class performance metrics showing precision, recall, and F1-score for each emotion category. 

Enthusiasm achieves the highest performance while empty and neutral present greater classification challenges. 
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Figure 7. Training time comparison across three classification algorithms measured in seconds. Naive Bayes 

exhibits exceptional computational efficiency while Logistic Regression requires longer training duration. 
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The overall results demonstrate that classical machine learning approaches, when 

properly configured with optimized preprocessing and feature extraction pipelines, achieve 

strong performance for emotion detection tasks. Logistic Regression's success validates the 

hypothesis that linear models can effectively capture emotion-relevant patterns in TF-IDF 

transformed text features. The model's ability to achieve approximately 80% accuracy across 

eleven distinct emotion categories represents substantial improvement over random baseline 

performance of approximately 9%, demonstrating genuine learning of emotional semantics 

from linguistic features. 

5. CONCLUSION 

This study demonstrates that classical machine learning algorithms can achieve strong 

performance in multi-class emotion detection across eleven emotional categories using a 

balanced dataset of 106,000 textual instances. Among the evaluated models, Logistic Regression 

exhibited the highest performance, attaining an accuracy of 79.90%, and consistently 

outperforming both Random Forest and Naïve Bayes classifiers. Cross-validation results 

further confirmed the robustness and stability of the models, with Logistic Regression 

achieving a mean score of 79.4% and a standard deviation of only 0.4%, indicating reliable 

generalization across different training subsets. 

Emotion-wise performance analysis revealed that categories with clearer linguistic 

markers such as enthusiasm, love, fun, neutral, and anger were classified with higher reliability, 

whereas low-arousal emotions, including sadness and empty, posed greater classification 

challenges due to semantic overlap. Although Logistic Regression required a longer training 

time compared to the other models, its superior predictive performance justifies the additional 

computational cost. 

Overall, the findings confirm that optimized classical machine learning particularly 

Logistic Regression offers an accurate, interpretable, and computationally efficient solution for 

fine-grained emotion classification, with significant potential for practical applications in areas 

such as mental health monitoring, customer service analytics, social media analysis, and 

educational technologies. 
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